如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,,.
(1)求異面直線和所成角的大;
(2)求幾何體的體積.
(1) ;(2).
解析試題分析:(1)求異面直線所成的角,一般根據(jù)定義,過異面直線中的一條上某一點(diǎn)作中一條直線的平行線,把異面直線所成的角化為相交直線所夾的銳角或直角,而這可能通過在三角形中求得,如果圖形中有兩兩相互垂直且交于同一點(diǎn)的三條直線,那么我們可以建立空間直角坐標(biāo)系,把異面直線所成的角轉(zhuǎn)化為空間兩向量的夾角,要注意異面直線所成的角的范圍是,而向量的夾角范圍是,解題時注意轉(zhuǎn)化;(2)這個幾何體我們要通過劃分,把它變成幾個可求體積的幾何體,如三棱錐和四棱錐,這兩個棱錐的體積都易求,故原幾何體的體積也易求得.
試題解析:(1)解法一:在的延長線上延長至點(diǎn)使得,連接.
由題意得,,,平面,
∴平面,∴,同理可證面.
∵ ,,
∴為平行四邊形,
∴.
則(或其補(bǔ)角)為異面直線和
所成的角. 3分
由平面幾何知識及勾股定理可以得
在中,由余弦定理得
.
∵ 異面直線的夾角范圍為,
∴ 異面直線和所成的角為. 7分
解法二:同解法一得所在直線相互垂直,故以為原點(diǎn),所在直線
分別為軸建立如圖所示的空間直角坐標(biāo)系, 2分
可得,
∴ ,
得. 4分
設(shè)向量夾角為,則
.
∵ 異面直線的夾角范圍為,
∴ 異面直線和所成的角為. 7分
(2)如圖,連結(jié),過作的垂線,垂足為,則平面,且. 9分
∵
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知正方體的棱長為2,E、F分別是、的中點(diǎn),過、E、F作平面交于G.
(l)求證:EG∥;
(2)求二面角的余弦值;
(3)求正方體被平面所截得的幾何體的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知長方形中,,為的中點(diǎn).將沿折起,使得平面平面.
(1)求證:;
(2)若點(diǎn)是線段上的一動點(diǎn),問點(diǎn)E在何位置時,二面角的余弦值為.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在如圖所示的幾何體中,四邊形為平行四邊形,,平面,,,,.
(1)若是線段的中點(diǎn),求證:平面;
(2)若,求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在棱長為1的正方體ABCD-A1B1C1D1中,點(diǎn)E是棱AB上的動點(diǎn).
(1)求證:DA1⊥ED1;
(2)若直線DA1與平面CED1成角為45o,求的值;
(3)寫出點(diǎn)E到直線D1C距離的最大值及此時點(diǎn)E的位置(結(jié)論不要求證明).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在四棱錐中,//,,,平面,.
(1)求證:平面;
(2)求異面直線與所成角的余弦值;
(3)設(shè)點(diǎn)為線段上一點(diǎn),且直線與平面所成角的正弦值為,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,在四棱錐PABCD中,PD⊥平面ABCD,四邊形ABCD是菱形,AC=2,BD=2,E是PB上任意一點(diǎn).
(1)求證:AC⊥DE;
(2)已知二面角APBD的余弦值為,若E為PB的中點(diǎn),求EC與平面PAB所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,圓錐的高PO=4,底面半徑OB=2,D為PO的中點(diǎn),E為母線PB的中點(diǎn),F(xiàn)為底面圓周上一點(diǎn),滿足EF⊥DE.
(1)求異面直線EF與BD所成角的余弦值;
(2)求二面角OOFE的正弦值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com