如圖,已知長方形中,,的中點.將沿折起,使得平面平面.


(1)求證:;
(2)若點是線段上的一動點,問點E在何位置時,二面角的余弦值為

(1)詳見解析;(2)中點.

解析試題分析:(1)由已知圖形可得,取的中點,取的中點,連接,可證:三條直線兩兩垂直,平面平面,為等腰直角三角形,底面,,為中點,所以易證,建立空間直角坐標系,證.
(2)由,設出點坐標,求出面的法向量,以及面的法向量,利用,解出的值,從而判定點的位置.
試題解析:(1)因為平面平面,的中點,,取的中點,連接平面,取中點,連接,則,以為原點如圖建立空間直角坐標系,得:                ..3分


所以,,故        7分
(2)設,因為平面的一個法向量
,
設平面的一個法向量為,
,得,所以,10分
因為
求得,所以的中點。12分
考點:1.空間向量求線線垂直;2.空間向量求二面角.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

如圖,在棱長為a的正方體ABCD-A1B1C1D1中,G為△BC1D的重心,

(1)求證:A1、G、C三點共線;
(2)求證:A1C⊥平面BC1D;
(3)求點C到平面BC1D的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知四邊形ABCD滿足,E是BC的中點,將△BAE沿AE翻折成,F(xiàn)為的中點.
(1)求四棱錐的體積;
(2)證明:
(3)求面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.

(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,是直角梯形,∠=90°,,=1,=2,又=1,∠=120°,,直線與直線所成的角為60°.
(1)求二面角的的余弦值;
(2)求點到面的距離.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

(理)已知直三棱柱中,,是棱的中點.如圖所示.
 
(1)求證:平面;
(2)求二面角的大。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖,幾何體中,為邊長為的正方形,為直角梯形,,,,

(1)求異面直線所成角的大小;
(2)求幾何體的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖1,在△ABC中,BC=3,AC=6,∠C=90°,且DE∥BC,將△ADE沿DE折起到△A1DE的位置,使A1D⊥CD,如圖2。

(1)求證:BC⊥平面A1DC;
(2)若CD=2,求BE與平面A1BC所成角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

如圖幾何體中,四邊形為矩形,,,,的中點,為線段上的一點,且.

(1)證明:
(2)證明:面;
(3)求三棱錐的體積.

查看答案和解析>>

同步練習冊答案