【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2

(1)求異面直線PC與AD所成角的大。
(2)若平面ABCD內(nèi)有一經(jīng)過點C的曲線E,該曲線上的任一動點Q都滿足PQ與AD所成角的大小恰等于PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設點Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動點,其中G為曲線E和DC的交點.以B為圓心,BQ為半徑r的圓分別與梯形的邊AB、BC交于M、N兩點.當Q點在曲線段CG上運動時,試求圓半徑r的范圍及VPBMN的范圍.

【答案】
(1)解:如圖,以A為原點,直線AB為x軸、直線AD為y軸、直線AP為z軸,建立空間直角坐標系.

于是有P(0,0,2), ,D(0,1,0).

則有 ,又

則異面直線PC與AD所成角θ滿足 ,

所以異面直線PC與AD所成角的大小為


(2)解:設點Q(x,y,0),點P(0,0,2)、點D(0,1,0)、點A(0,0,0),

,

, ,

化簡整理得到3y2﹣x2=4,

則曲線E是平面ABCD內(nèi)的雙曲線


(3)解:在如圖所示的xOy的坐標系中,因為D(0,1)、 ,設G(x1,y1).則有 ,故DC的方程為 ,

代入雙曲線E:3y2﹣x2=4的方程可得,3y2﹣8(y﹣1)2=45y2﹣16y+12=0,其中

因為直線DC與雙曲線E交于點C,故 .進而可得 ,即

故雙曲線E在直角梯形ABCD內(nèi)部(包括邊界)的區(qū)域滿足

又設Q(x,y)為雙曲線CG上的動點,

所以,

因為 ,所以當 時, ;

時,

而要使圓B與AB、BC都有交點,則|BQ|≤2.

故滿足題意的圓的半徑取值范圍是

因為PA⊥DMN,所以P﹣DMN體積為 .故問題可以轉(zhuǎn)化為研究△BMN的面積.又因為∠MBN為直角,所以△BMN必為等腰直角三角形.

由前述,設 ,則|BM|=|BN|=r,

故其面積 ,所以

于是,

(當Q點運動到與點C重合時,體積取得最大值;當Q點運動到橫坐標 時,

即|BQ|長度最小時,體積取得最小值).


【解析】(1)如圖,以A為原點,直線AB為x軸、直線AD為y軸、直線AP為z軸,建立空間直角坐標系.利用向量夾角公式即可得出.(2)設點Q(x,y,0),點P(0,0,2)、點D(0,1,0)、點A(0,0,0),利用 ,化簡整理即可得出.(3)設G(x1 , y1).則 ,把DC的方程為代入雙曲線E:3y2﹣x2=4的方程可得,可得y1y2 . 可得G.故雙曲線E在直角梯形ABCD內(nèi)部(包括邊界)的區(qū)域滿足 ,.又設Q(x,y)為雙曲線CG上的動點,利用兩點之間距離公式及其范圍即可得出.
【考點精析】根據(jù)題目的已知條件,利用異面直線及其所成的角和空間向量的數(shù)量積運算的相關知識可以得到問題的答案,需要掌握異面直線所成角的求法:1、平移法:在異面直線中的一條直線中選擇一特殊點,作另一條的平行線;2、補形法:把空間圖形補成熟悉的或完整的幾何體,如正方體、平行六面體、長方體等,其目的在于容易發(fā)現(xiàn)兩條異面直線間的關系;等于的長度的方向上的投影的乘積.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線C1:y2=8ax(a>0),直線l傾斜角是45°且過拋物線C1的焦點,直線l被拋物線C1截得的線段長是16,雙曲線C2 =1的一個焦點在拋物線C1的準線上,則直線l與y軸的交點P到雙曲線C2的一條漸近線的距離是(
A.2
B.
C.
D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|2x﹣a|+a.
(Ⅰ)若不等式f(x)≤6的解集為{x|﹣2≤x≤3},求實數(shù)a的值;
(Ⅱ)在(Ⅰ)的條件下,若存在實數(shù)n使f(n)≤m﹣f(﹣n)成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù) ,其中a為實數(shù).
(1)當 時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(2)當x≥ 時,若關于x的不等式f(x)≥0恒成立,試求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知集合.

1)若,的概率;

(2)若的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知定義在[0,+∞)上的函數(shù)f(x)滿足f(x)=2f(x+2),當x∈[0,2)時,f(x)=﹣2x2+4x.設f(x)在[2n﹣2,2n)上的最大值為an(n∈N*),且{an}的前n項和為Sn , 則Sn=(
A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】 求平行于直線3x+4y-12=0,且與它的距離是7的直線的方程;

求垂直于直線x+3y-5="0," 且與點P(-1,0)的距離是的直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,已知以M為圓心的圓M: 及其上一點A2,4

1)設圓Nx軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標準方程;

2)設平行于OA的直線l與圓M相交于BC兩點,且BC=OA,求直線l的方程;

3)設點Tt,o)滿足:存在圓M上的兩點PQ,使得,求實數(shù)t的取值范圍。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知正方體,是底面對角線的交點.

求證:(1)

(2)CO∥面.

查看答案和解析>>

同步練習冊答案