【題目】已知正方體是底面對(duì)角線的交點(diǎn).

求證:(1);

(2)CO∥面.

【答案】(1)見解析(2)見解析

【解析】

(1)利用線面垂直的性質(zhì)可得結(jié)合,由線面垂直的判定定理可得平面,從而可得結(jié)果;(2)連接交點(diǎn)為,連接,先證明為平行四邊形,可得由線面平行的判定定理可得結(jié)論.

(1)由題知ACBD,BB1⊥平面ABCD,

AC平面ABCD, 所以ACBB1

BD∩BB1=B, 所以AC⊥平面BB1D1D,

B1D1平面BB1D1D,所以ACB1D1

(2)證明:連接ACBD交點(diǎn)為O,連接AO,

由正方體知AC//AC,AC=AC,OC//AO,OC=AO

所以OCOA為平行四邊形,即 OC//AO

又 AO在面ABD,OC不在面ABD,

所以OC//ABD(線線平行---線面平行)

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,PA⊥平面ABCD,四邊形ABCD是直角梯形,其中DA⊥AB,AD∥BC.PA=2AD=BC=2,AB=2

(1)求異面直線PC與AD所成角的大;
(2)若平面ABCD內(nèi)有一經(jīng)過點(diǎn)C的曲線E,該曲線上的任一動(dòng)點(diǎn)Q都滿足PQ與AD所成角的大小恰等于PC與AD所成角.試判斷曲線E的形狀并說明理由;
(3)在平面ABCD內(nèi),設(shè)點(diǎn)Q是(2)題中的曲線E在直角梯形ABCD內(nèi)部(包括邊界)的一段曲線CG上的動(dòng)點(diǎn),其中G為曲線E和DC的交點(diǎn).以B為圓心,BQ為半徑r的圓分別與梯形的邊AB、BC交于M、N兩點(diǎn).當(dāng)Q點(diǎn)在曲線段CG上運(yùn)動(dòng)時(shí),試求圓半徑r的范圍及VPBMN的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】農(nóng)科院的專家為了了解新培育的甲、乙兩種麥苗的長(zhǎng)勢(shì)情況,從甲、乙兩種麥苗的試驗(yàn)田中各抽取6株麥苗測(cè)量麥苗的株高,數(shù)據(jù)如下:(單位:cm)

甲:9,10,11,12,10,20

乙:8,14,13,10,12,21.

(1)在給出的方框內(nèi)繪出所抽取的甲、乙兩種麥苗株高的莖葉圖;

(2)分別計(jì)算所抽取的甲、乙兩種麥苗株高的平均數(shù)與方差,并由此判斷甲、乙兩種麥苗的長(zhǎng)勢(shì)情況.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(選修4﹣5:不等式選講)
已知函數(shù)f(x)=|2x﹣1|+|2x+a|,g(x)=x+3.
(1)當(dāng)a=﹣2時(shí),求不等式f(x)<g(x)的解集;
(2)設(shè)a>﹣1,且當(dāng) 時(shí),f(x)≤g(x),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)f(x)是定義在R 且周期為1的函數(shù),在區(qū)間上, 其中集合D=,則方程f(x)-lgx=0的解的個(gè)數(shù)是____________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(1)討論函數(shù)的單調(diào)性;

(2)若對(duì)任意,都有恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)員工500人參加學(xué)雷鋒活動(dòng),按年齡共分六組,得頻率分布直方圖如下:

(1)現(xiàn)在要從年齡較小的第1、2、3組中用分層抽樣的方法抽取6人,則年齡在第1,2,3組的各抽取多少人?

(2)在第(1)問的前提下,從這6人中隨機(jī)抽取2人參加社區(qū)活動(dòng),求至少有1人年齡在第3組的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】街道旁邊有一游戲:在鋪滿邊長(zhǎng)為9 cm的正方形塑料板的寬廣地面上,擲一枚半徑為1 cm的小圓板,規(guī)則如下:每擲一次交5角錢,若小圓板壓在正方形的邊上,可重?cái)S一次;若擲在正方形內(nèi),須再交5角錢可玩一次;若擲在或壓在塑料板的頂點(diǎn)上,可獲得一元錢,試問:

(1)小圓板壓在塑料板的邊上的概率是多少?

(2)小圓板壓在塑料板頂點(diǎn)上的概率是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓 )的左焦點(diǎn)為,離心率為

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;

(Ⅱ)設(shè)為坐標(biāo)原點(diǎn), 為直線上一點(diǎn),過的垂線交橢圓于, .當(dāng)四邊形是平行四邊形時(shí),求四邊形的面積。

查看答案和解析>>

同步練習(xí)冊(cè)答案