2.判斷下列函數(shù)的奇偶性:
(1)f(x)=$\sqrt{cosx-1}$;
(2)f(x)=$\frac{sinx-si{n}^{2}x}{1-sinx}$.

分析 先求出函數(shù)的定義域,結(jié)合函數(shù)奇偶性的定義進(jìn)行判斷即可.

解答 解:(1)由cosx-1≥0得cosx≥1,則cos=1,則x=2kπ,
則f(x)=0,則函數(shù)f(x)為既是奇函數(shù)也是偶函數(shù),
(2)由1-sinx≠0得sinx≠1,即x≠2kπ+$\frac{π}{2}$,則定義域關(guān)于原點(diǎn)不對(duì)稱,則函數(shù)f(x)為非奇非偶函數(shù).

點(diǎn)評(píng) 本題主要考查函數(shù)奇偶性的判斷,先求出函數(shù)的定義域,利用定義域是否關(guān)于原點(diǎn)對(duì)稱是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下面給出了四個(gè)類比推理.
①a,b為實(shí)數(shù),若a2+b2=0則a=b=0;類比推出:z1、z2為復(fù)數(shù),若z12+z22=0,則z1=z2=0.
②若數(shù)列{an}是等差數(shù)列,bn=$\frac{1}{n}$(a1+a2+a3+…+an),則數(shù)列{bn}也是等差數(shù)列;類比推出:若數(shù)列{cn}是各項(xiàng)都為正數(shù)的等比數(shù)列,dn=$\root{n}{{c}_{1}•{c}_{2}•{c}_{3}•…•{c}_{n}}$,則數(shù)列{dn}也是等比數(shù)列.
③若a、b、c∈R.則(ab)c=a(bc);類比推出:若$\overrightarrow{a}$、$\overrightarrow$、$\overrightarrow{c}$為三個(gè)向量.則($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$與$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)
④若圓的半徑為a,則圓的面積為πa2;類比推出:若橢圓的長(zhǎng)半軸長(zhǎng)為a,短半軸長(zhǎng)為b,則橢圓的面積為πab.
上述四個(gè)推理中,結(jié)論正確的是(  )
A.①②B.②③C.①④D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=alnx+bx2+x(a,b∈R).
(1)若a=-1,b=0,求f(x)的最小值;
(2)若f(1)=f′(1)=0,求f(x)的單調(diào)遞減區(qū)間;
(3)若a=b=1,正實(shí)數(shù)x1,x2滿足f(x1)+f(x2)+x1x2=0,證明x1+x2≥$\frac{{\sqrt{5}-1}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.在△ABC中,角A、B、C的對(duì)邊分別為a、b、c,且sinCcosB+sinBcosC=3sinAcosB.
(1)求cosB的值;
(2)若$\overrightarrow{BA}$•$\overrightarrow{BC}$=2,且b=2$\sqrt{2}$,求a和c的值.
(3)求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.函數(shù) f(x)=$\left\{\begin{array}{l}{2{x}^{3}+{x}^{2}+1,x≤0}\\{{e}^{ax},x>0}\end{array}\right.$在[-2,3]上的最大值為2,則實(shí)數(shù)a的取值范圍是( 。
A.[$\frac{1}{3}$ln2,+∞)B.[0,$\frac{1}{3}$ln2]C.(-∞,0]D.(-∞,$\frac{1}{3}$ln2]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.命題“對(duì)任意x∈[1,2],x2-a≤0”為真命題的一個(gè)充分不必要條件可以是( 。
A.a≥4B.a>4C.a≥1D.a>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)全集R,M={x|x≤0,x∈R},N={x∈Z+|x<$\int_0^2$xdx},則(∁RM)∩N等于( 。
A.{0}B.{1}C.{1,2,}D.{0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.在△ABC中,內(nèi)角A、B、C的對(duì)邊分別是a、b、c,且a2=b2+c2+$\sqrt{3}$ab.
(Ⅰ)求A;
(Ⅱ)設(shè)a=$\sqrt{3}$,S為△ABC的面積,求S+3cosBcosC的最大值,并指出此時(shí)B的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知集合M={x|y=$\sqrt{3-{x}^{2}}$},N={x||x+1|≤2},全集I=R,則圖中陰影部分表示的集合為(  )
A.{x|-$\sqrt{3}$≤x≤1}B.{x|-3≤x≤1}C.{x|-3≤x<-$\sqrt{3}$}D.{x|1≤x≤$\sqrt{3}$}

查看答案和解析>>

同步練習(xí)冊(cè)答案