已知在等比數(shù)列{an}中,a1>1且a2a3=2,a1+a4=
9
2
,又?jǐn)?shù)列{bn}滿(mǎn)足bn=log2an(n∈N*
(Ⅰ)求{an}的通項(xiàng)公式;
(Ⅱ)求{bn}的前幾項(xiàng)和Sn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(Ⅰ)由題意有
a12q3=2
a1(1+q3)=
9
2
,由此能求出an=23-n
(Ⅱ)bn=log2an=log223-n=3-n,由此能求出{bn}的前幾項(xiàng)和Sn
解答: 解:(Ⅰ)設(shè){an}的公比為q,
由題意有
a12q3=2
a1(1+q3)=
9
2
,
解得
a1=4
q=
1
2
,或
a1=
1
2
q=2
(∵a1>1,∴這組解不合題意,舍)
∴an=4•(
1
2
n-1=23-n
(Ⅱ)bn=log2an=log223-n=3-n,
∴Sn=3n-(1+2+3+…+n)
=3n-
n(n+1)
2

=
5n
2
-
n2
2
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)公式的求法,是中檔題,解題時(shí)要注意分組求和法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)a=0.7
1
2
,b=0.8
1
2
,c=log30.7,則( 。
A、a<b<c
B、c<b<a
C、b<a<c
D、c<a<b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)為R上的奇函數(shù),當(dāng)x>0時(shí),f(x)=x(x+1),則當(dāng)x<0時(shí),f(x)的表達(dá)式( 。
A、x(x+1)
B、x(1-x)
C、x(x-1)
D、-x(x+1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+2x-3.
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)求函數(shù)f(x)在[-3,1]的最大值與最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某人需要補(bǔ)充維生素.現(xiàn)有甲、乙兩種維生素膠囊,它們都含有維生素A、C、E和最新發(fā)現(xiàn)的Z.甲種每粒含有維生素A、C、E、Z分別是1mg,2mg,4mg,3mg;乙種每粒含有維生素A、C、E、Z分別是3mg,1mg,3mg,2mg.若此人每天攝入維生素A至多18mg,維生素C至多13mg,維生素E至少12mg,則他每天應(yīng)服用兩種膠囊和多少粒才能滿(mǎn)足需要量,并能得到最大最的維生素Z?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)An為數(shù)列{an}的前n項(xiàng)和,且有An=
3
2
(an-1)(n∈N+),數(shù)列{an}的通項(xiàng)公式為bn=4n+3(n∈N+).
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若d∈{a1,a2,…an}∩{b1,b2,…bn},則稱(chēng)d為數(shù)列{an}與{bn}的公共項(xiàng).如果將數(shù)列{an}與{bn}的公共項(xiàng)按它們?cè)谠瓟?shù)列的順序排成一個(gè)新的數(shù)列{dn},求{dn}的通項(xiàng)公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知在△ABC中,∠A,∠B,∠C的對(duì)邊分別為a,b,c,若bcosC+ccosB=2acosC.
(1)求∠C;
(2)若c=4
3
,a+b=8,求S△ABC

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

根據(jù)要求,求x的取值范圍:
(1)tan
x
2
3

(2)cot2x≤-
3
;
(3)|sinx|≤|cosx|;
(4)logxtanx>0;
(5)log
3
sin
x
2
-log
3
cos
x
2
>-1且-2π<x<2π.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
ax+b
x-a
(b>0),若f(x)>a+1的解集是(1,5),求實(shí)數(shù)a、b的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案