18.等比數(shù)列{an}中,已知a1a2a12=64,則a4a6的值為16.

分析 利用等比數(shù)列的通項(xiàng)公式求解.

解答 解:等比數(shù)列{an}中,
∵a1a2a12=64,∴${{a}_{1}}^{3}{q}^{12}$=64,
∴${a}_{1}{q}^{4}=4$,
∴a4a6=${{a}_{1}}^{2}{q}^{8}$=(${a}_{1}{q}^{4}$)2=16.
故答案為:16.

點(diǎn)評(píng) 本題考查等比數(shù)列的兩項(xiàng)積的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意等比數(shù)列的性質(zhì)及通項(xiàng)公式的性質(zhì)的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知點(diǎn)P(0,2)和圓C:x2+y2-8x+11=0.
(1)求過點(diǎn)P,點(diǎn)C和原點(diǎn)三點(diǎn)圓的方程;
(2)求以點(diǎn)P為圓心且與圓C外切的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.設(shè)函數(shù)f(x)=$\frac{2{x}^{2}}{{e}^{x}}$+$\frac{mx}{{e}^{x}}$,m∈R.
(1)若f(x)在x=0處取得極值,確定m的值,并求此時(shí)曲線y=f(x)在點(diǎn)(2,f(2))處的切線方程;
(2)若f(x)在[2,+∞)上為減函數(shù),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=m+\frac{\sqrt{2}}{2}t}\\{y=\frac{\sqrt{2}}{2}t}\end{array}\right.$(t為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρ2cos2θ+3ρ2sin2θ=12,且曲線C的左焦點(diǎn)F在直線l上.
(Ⅰ)若直線l與曲線C交于A、B兩點(diǎn).求|FA|•|FB|的值;
(Ⅱ)設(shè)曲線C的內(nèi)接矩形的周長(zhǎng)為P,求P的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.在等差數(shù)列{an}中,解答下列問題:
(1)已知a1+a2+a3=12,與a4+a5+a6=18,求a7+a8+a9的值;
(2)設(shè)a3=1012與an=3112且d=70,求項(xiàng)數(shù)n的值;
(3)若a1=1且an+1-an=$\frac{1}{2}$,求a11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知log63=a,則log612=2-a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知$\frac{1}{1-i}$十$\frac{1}{2+3i}$=x+yi,求實(shí)數(shù)x,y的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.19、如圖,在直角梯形ABCD中,AB∥CD,且AB=AD=2,CD=4,四邊形ADE1F1是正方形,且平面ADE1F1⊥平面ABCD,M是E1C的中點(diǎn).
(1)證明:BM∥平面ADE1F1;
(2)求三棱錐D-BME1的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.執(zhí)行如圖所示的程序框圖,則輸出的k值為( 。
A.7B.9C.11D.13

查看答案和解析>>

同步練習(xí)冊(cè)答案