已知Sn為正項數(shù)列{an}的前n項和,且滿足Sn=
1
2
an2+
1
2
an(n∈N*
(1)求a1,a2,a3,a4的值;
(2)求數(shù)列{an}的通項公式.
考點(diǎn):數(shù)列遞推式
專題:綜合題,點(diǎn)列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:(1)利用Sn=
1
2
an2+
1
2
an,n分別取1,2,3,4,代入計算,即可得出結(jié)論;
(2)由Sn=
1
2
an2+
1
2
an,再寫一式,兩式相減,可得數(shù)列{an}是以1為首項,1為公差的等差數(shù)列,即可求數(shù)列{an}的通項公式.
解答: 解:(1)∵Sn=
1
2
an2+
1
2
an,
∴S1=
1
2
a12+
1
2
a1,
∵a1>0,∴a1=1,
又S2=
1
2
a22+
1
2
a2,a2>0,∴a2=2,
同理可得a3=3,a4=4;
(2)∵Sn=
1
2
an2+
1
2
an
∴n≥2時,Sn-1=
1
2
an-12+
1
2
an-1
兩式相減可得an=(
1
2
an2+
1
2
an)-(
1
2
an-12+
1
2
an-1),
∴(an+an-1)(an-an-1-1)=0,
∵an>0,∴an-an-1=1,
∴數(shù)列{an}是以1為首項,1為公差的等差數(shù)列,
∴an=n.
點(diǎn)評:本題考查數(shù)列遞推式,考查數(shù)列的通項,考查等差數(shù)列的證明,證明數(shù)列{an}是以1為首項,1為公差的等差數(shù)列是關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,a1+a2+a3=5,a7+a8+a9=10,則a4+a5+a6=( 。
A、5
2
B、15
C、
15
2
D、50

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ln(1+x),g(x)=ln(1-x).
(1)求函數(shù)f(x)-g(x)的定義域;
(2)判斷函數(shù)f(x)-g(x)的奇偶性,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知π<α<2π且tanα=-2,求sinα-cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC中,a,b,c是A,B,C所對的邊,S是該三角形的面積,且a2+b2-c2=ab
(1)求∠C的大;
(2)若a=4,S=5
3
,求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{bn}滿足b1=
3
4
,a1=
1
4
,an+bn=1,bn+1=
bn
1
-a
2
n

(Ⅰ)求b1,b2,b3,b4;   
(Ⅱ)求數(shù)列{ bn}的通項公式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知α的終邊過點(diǎn)(a,2a)(其中a<0),
(1)求cosα及tanα的值.
(2)化簡并求
sin(π-α)cos(2π-α)sin(-α+
2
)
tan(-α-π)sin(-π-α)
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

x∈[-
π
3
,
π
4
]
,求函數(shù)f(x)=
1
cos2x
+2tanx+1
的最小值及取得最小值時的x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓M過兩點(diǎn)C(1,-1),D(-1,1)且圓心M在直線x+y-2=0上,設(shè)P是直線3x+4y+8=0上的動點(diǎn),PA,PB是圓M的兩條切線,A,B是切點(diǎn),則四邊形PAMB面積的最小值為
 

查看答案和解析>>

同步練習(xí)冊答案