若n∈N*,且n為奇數(shù),則6n+C
 
1
n
•6n-1+C
 
2
n
•6n-2+…+C
 
n-1
n
•6被8除所得的余數(shù)是
 
考點:二項式定理的應(yīng)用
專題:計算題,二項式定理
分析:法一:根據(jù)題意,由二項式定理,可以將6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6變形為Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-1,又由n為奇數(shù),則可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-2,分析可得答案;
法二,用特殊制法,根據(jù)題意,n∈N*,且n為奇數(shù),令n=1,可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6=6,分析可得答案.
解答: 解:法一:根據(jù)題意,6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6
=6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6+Cnn-1
=(6+1)n-1=7n-1=(8-1)n-1
=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8+(-1)nCnn-1
又由n為奇數(shù),則6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6-1=Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8-2,
且Cn0•8n-Cn1•8n-1+…+(-1)n-1Cnn-1•8可以被8整除,
則6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6被8除所得的余數(shù)是6;
法二,根據(jù)題意,n∈N*,且n為奇數(shù),
在6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6中,令n=1,可得6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6=6,
6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6被8除所得的余數(shù)是6.
故答案為:6.
點評:本題考查二項式定理的應(yīng)用,關(guān)鍵是根據(jù)二項式定理,靈活將6n+Cn1•6n-1+Cn2•6n-2+…+Cnn-1•6變形,對于填空題,法二是簡便易行的方法.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列{an}的前n項和為Sn=2an-2,數(shù)列{bn}是首項為a1,公差不為零的等差數(shù)列,且b1,b3,b11成等比數(shù)列.
(1)求數(shù)列{an}與{bn}的通項公式;
(2)對于?n∈N*不等式
b1
a1
+
b2
a2
+
b3
a3
+…+
bn
an
<m恒成立,求m取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A,B,C對邊分別為a,b,c,且
3
b=2asinB.
(1)求角A.
(2)將函數(shù)y1=sinx的圖象向左平移
π
6
個單位長度,再將所得圖象上各點的橫坐標(biāo)縮短為原來的一半(縱坐標(biāo)不變),得到函數(shù)y=f(x)的圖象,若f(A)=
1
2
,b=1,且△ABC的面積s=
3
2
,判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

△ABC的內(nèi)角A、B、C的對邊分別為a、b、c,且a2+c2-
2
ac=b2
.求角B.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在公差不為0的等差數(shù)列{an}中,a3+a10=15,且a2,a5,a11成等比數(shù)列.
(Ⅰ)求{an}的通項公式;
(Ⅱ)設(shè)bn=
1
an
+
1
an+1
+…+
1
a2n-1
,證明:
1
2
≤bn<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,公差d≠0,a1=1且a1,a2,a5成等比數(shù)列.在數(shù)列{bn}中,b1=3,bn+1=2bn-1(n∈N*).
(1)求數(shù)列{an}和{bn}的通項公式;
(2)求數(shù)列{an•(bn-1)}的前n項和為Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知數(shù)列{an}是等差數(shù)列,{bn}是等比數(shù)列,且b1=2a1=2,b4=16,a1+a2+a11=b1+b2+b3
(1)求數(shù)列{an}和{bn}的通項公式;
(2)數(shù)列{cn}滿足cn=(2an-1)bn,求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
x-1
+log2x
的定義域為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,已知∠C=60°,b=4
3
,則BC邊上的高等于
 

查看答案和解析>>

同步練習(xí)冊答案