13.函數(shù)f(x)=ln(3-x)(x+1)的定義域?yàn)椋ā 。?table class="qanwser">A.[-1,3]B.(-1,3)C.(-∞,-3)∪(1,+∞)D.(-∞,-1)∪(3,+∞)

分析 根據(jù)對(duì)數(shù)函數(shù)的性質(zhì)求出f(x)的定義域即可.

解答 解:由題意得:(3-x)(x+1)>0,
即(x-3)(x+1)<0,
解得:-1<x<3,
故函數(shù)的定義域是(-1,3),
故選:B.

點(diǎn)評(píng) 本題考查了求函數(shù)的定義域問(wèn)題,考查對(duì)數(shù)函數(shù)的性質(zhì),是一道基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知函數(shù)f(x)=sin(ωx+φ)(ω>0,|φ|≤$\frac{π}{2}$),x=-$\frac{π}{4}$為f(x)的零點(diǎn),x=$\frac{π}{4}$為y=f(x)圖象的對(duì)稱軸,且f(x)在(${\frac{π}{4}$,$\frac{π}{3}}$)單調(diào),則ω的最大值為( 。
A.12B.11C.10D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.經(jīng)過(guò)點(diǎn)M(1,$\frac{\sqrt{3}}{2}$)作直線l交橢圓$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1于A、B兩點(diǎn),且M為弦AB的中點(diǎn).
(1)求直線l的方程;
(2)求弦AB的長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.函數(shù)y=($\frac{3}{π}$)${\;}^{{x^2}+2x-3}}$的遞減區(qū)間為  (  )
A.(1,+∞)B.(-∞,1)C.(-∞,-1)D.(-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.(1)計(jì)算:0.064${\;}^{-\frac{1}{3}}}$-(-$\frac{1}{8}$)0+16${\;}^{\frac{3}{4}}}$+0.25${\;}^{\frac{1}{2}}}$;
(2)計(jì)算$\frac{2lg2+lg3}{{1+\frac{1}{2}lg0.36+\frac{1}{3}lg8}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.不等式$\frac{4}{x-1}$<x-1的解集是(-1,1)∪(3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.若不等式|2x-1|-|x+a|≥a對(duì)任意的實(shí)數(shù)x恒成立,則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-$\frac{1}{3}$]B.(-$\frac{1}{2}$,-$\frac{1}{4}$]C.(-$\frac{1}{2}$,0)D.(-∞,-$\frac{1}{4}$]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.函數(shù)f(x)=cos$\frac{π}{2}$x,對(duì)任意的實(shí)數(shù)t,記f(x)在[t,t+1]上的最大值為M(t),最小值為m(t),則函數(shù)h(t)=M(t)-m(t)的值域?yàn)?[1-\frac{{\sqrt{2}}}{2},\sqrt{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和Sn=$\frac{1}{2}$n(n-1),且an是bn與1的等差中項(xiàng).
(1)求數(shù)列{an}和數(shù)列{bn}的通項(xiàng)公式;
(2)若cn=$\frac{1}{{a}_{n}(n+1)}$(n≥2),求c2+c3+c4+…+cn

查看答案和解析>>

同步練習(xí)冊(cè)答案