在△ABC中,b=4
3
,c=2
3
,A=120°,則a=
 
考點(diǎn):余弦定理
專題:解三角形
分析:利用余弦定理列出關(guān)系式,將b,c,cosA的值代入求出a的值即可.
解答: 解:∵在△ABC中,b=4
3
,c=2
3
,A=120°,
∴由余弦定理得:a2=b2+c2-2bccosA=48+12+24=84,
則a=2
21

故答案為:2
21
點(diǎn)評:此題考查了余弦定理,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某工廠對某產(chǎn)品的產(chǎn)量與成本的資料分析后有如下數(shù)據(jù):
產(chǎn)量x千件2356
成本y萬元78912
(1)畫出散點(diǎn)圖.
(2)求成本y與產(chǎn)量x之間的線性回歸方程
y
=bx+a.(結(jié)果保留兩位小數(shù))
參考公式:b=
n
i=1
xiyi-n
.
x
.
y
n
i=1
x
2
i
-n
.
x
2
,a=
y
-b
.
x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合Mn={S|S=|i1-i2|+|i3-i4|+…+|i2n-1-i2n|,i1,i2,…,i2n為1,2,…,2n的一個排列},記集合Mn中的元素個數(shù)為Card(Mn),例如M1={1},Card(M1)=1;M2={2,4},Card(M2)=2,則(1)M3=
 
;(2)Card(Mn)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若方程lnx=3-x的解在區(qū)間(a-1,a)(a∈Z)內(nèi),則a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,xlg2+ylg8=lg2,則
1
x
+
1
3y
的最小值
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知A(-1,2,1),B(2,1,2),則A,B兩點(diǎn)間的距離為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

數(shù)列-
3
2
,
5
4
,-
7
6
,
9
8
…的一個通項(xiàng)公式是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知高為3的直棱柱ABC-A′B′C′的底面是邊長為1的正三角形(如圖所示),則三棱錐B′-ABC的體積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個等比數(shù)列{an},{bn}的前n項(xiàng)和分別為Sn,Tn,且滿足
Sn
Tn
=
2n-1
3n-1
,則
a7
b7
=
 

查看答案和解析>>

同步練習(xí)冊答案