18.已知C為△ABC的一個(gè)內(nèi)角,向量$\overrightarrow{m}$=(2cosC-1,-2),$\overrightarrow{n}$=(cosC,cosC+1).若$\overrightarrow{m}$⊥$\overrightarrow{n}$,則∠C等于( 。
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根據(jù)向量的數(shù)量積和坐標(biāo)形式和向量的垂直的條件得到關(guān)于cosC的方程,解得即可.

解答 解:向量$\overrightarrow{m}$=(2cosC-1,-2),$\overrightarrow{n}$=(cosC,cosC+1).$\overrightarrow{m}$⊥$\overrightarrow{n}$,
∴$\overrightarrow{m}$•$\overrightarrow{n}$=2cos2C-cosC-2cosC-2=2cos2C-3osC-2=(2cosC+1)(cosC-2)=0,
解得cosC=-$\frac{1}{2}$,cosC=2(舍去),
∴C=$\frac{2π}{3}$,
故選:C.

點(diǎn)評(píng) 本題考查了向量的數(shù)量積公式和向量垂直的條件,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知O是坐標(biāo)原點(diǎn),點(diǎn)M坐標(biāo)為(2,1),點(diǎn)N(x,y)是平面區(qū)域$\left\{\begin{array}{l}x+y≤2\\ x≥\frac{1}{2}\\ y≥x\end{array}\right.$上的一個(gè)動(dòng)點(diǎn),則$\overrightarrow{OM}•\overrightarrow{ON}$的最小值為( 。
A.3B.2C.$\frac{3}{2}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知函數(shù)y=f(x+1)定義域是{x|-2≤x≤3},則y=f(2|x|-1)的定義域是$[-\frac{5}{2},\frac{5}{2}]$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.為了得到函數(shù)y=$\frac{1}{2}$sin(2x-$\frac{π}{3}$)的圖象,只需將函數(shù)y=sinxcosx的圖象(  )
A.向左平移$\frac{π}{3}$個(gè)單位B.向右平移$\frac{π}{3}$個(gè)單位
C.向左平移$\frac{π}{6}$個(gè)單位D.向右平移$\frac{π}{6}$個(gè)單位

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知函數(shù)f(x),對(duì)任意實(shí)數(shù)m,n滿足f(m+n)=f(m)f(n),且f(1)=a(a≠0),則f(n)=an(n∈N +).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.正項(xiàng)等比數(shù)列{an}滿足:a3=a2+2a1,若存在am,an,使得am•an=64a${\;}_{1}^{2}$,則$\frac{1}{m}$+$\frac{9}{n}$的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=1+$\frac{2x+sinx}{{{x^2}+1}}$,若f(x)的最大值和最小值分別為M和N,則M+N等于( 。
A.2B.3C.4D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知集合M={0,1,2,5,6,7},N={2,3,5,7},若P=M∩N,則P的真子集個(gè)數(shù)為(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)f(x)=lnx,g(x)=x-1.
(Ⅰ)求函數(shù)y=f(x)圖象在x=1處的切線方程;
(Ⅱ)證明:f(x)≤g(x);
(Ⅲ)若不等式f(x)≤ag(x)對(duì)于任意的x∈(1,+∞)均成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案