拋物線y2=4x的焦點坐標(biāo)為   
【答案】分析:先確定焦點位置,即在x軸正半軸,再求出P的值,可得到焦點坐標(biāo).
解答:解:∵拋物線y2=4x是焦點在x軸正半軸的標(biāo)準(zhǔn)方程,
p=2∴焦點坐標(biāo)為:(1,0)
故答案為:(1,0)
點評:本題主要考查拋物線的焦點坐標(biāo).屬基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
3
3
,右焦點F也是拋物線y2=4x的焦點.
(1)求橢圓方程;
(2)若直線l與C相交于A、B兩點,若
AF
=2
FB
,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點為F,其準(zhǔn)線與x軸交于點M,過M作斜率為k的直線與拋物線交于A、B兩點,弦AB的中點為P,AB的垂直平分線與x軸交于點E(x0,0).
(1)求k的取值范圍;
(2)求證:x0>3;
(3)△PEF能否成為以EF為底的等腰三角形?若能,求此k的值;若不能,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點F與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的一個焦點重合,它們在第一象限內(nèi)的交點為T,且TF與x軸垂直,則橢圓的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線y2=4x的焦點F的直線交拋物線于A、B兩點,點O是坐標(biāo)原點,若|AF|=5,則△AOB的面積為( 。
A、5
B、
5
2
C、
3
2
D、
17
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線y2=4x的焦點F,該拋物線上的一點A到y(tǒng)軸的距離為3,則|AF|=( 。
A、4B、5C、6D、7

查看答案和解析>>

同步練習(xí)冊答案