已知{an}為等差數(shù)列,a2+a3+a4=30,a5+a6=40,則公差d等于( 。
A、2B、2C、4D、5
考點(diǎn):等差數(shù)列的通項(xiàng)公式
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:由等差數(shù)列的性質(zhì)結(jié)合a2+a3+a4=30求得a3,代入a5+a6=40求得d的值.
解答: 解:在等差數(shù)列{an}中,
∵a2+a3+a4=30,∴3a3=30,a3=10,
又a5+a6=40,∴2a3+5d=40,
即5d=20,d=4.
故選:C.
點(diǎn)評(píng):本題考查了等差數(shù)列的通項(xiàng)公式,考查了等差數(shù)列的性質(zhì),是基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

甲、乙、丙三名同學(xué)同時(shí)參加高中數(shù)學(xué)競(jìng)賽,甲、乙、丙三名同學(xué)分別獲得一等獎(jiǎng)的概率分別為
1
2
,a,a
(0<a<1),甲、乙、丙三名同學(xué)參加這次高中數(shù)學(xué)競(jìng)賽獲得一等獎(jiǎng)的人數(shù)記為ξ.
(1)若a=
1
3
時(shí),求 甲、乙、丙三名同學(xué)獲得一等獎(jiǎng)人數(shù)不少于兩人的概率.
(2)在概率P(ξ=i)(i=0,1,2,3)中,若P(ξ=1)的值最大,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在等差數(shù)列{an}中,若a8+a9=0,則對(duì)于任意的n∈N*,且n≤15時(shí),等式a1+a2+a3+…+a16-n=a1+a2+a3+…+an恒成立.則在等比數(shù)列{bn}中,若b9b10=1,則對(duì)于任意的n∈N*,且
 
(請(qǐng)你用類(lèi)比的方法,寫(xiě)出相應(yīng)的正確結(jié)論).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)z=3+i,則
1
.
z
等于( 。
A、3+i
B、3-i
C、
3
10
i+
1
10
D、
3
10
+
1
10
i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知c是實(shí)數(shù),二次方程x2+x+c=0有兩個(gè)復(fù)數(shù)根a,b.若|a-b|=3,則c=(  )
A、-
5
2
B、
5
2
C、-2
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若α為第三象限角,則
cosα
1-sin2α
+
sinα
1-cos2α
的值為(  )
A、2B、-2C、1D、-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示,四邊形OABC是上底為1,下底為3,底角為45°的等腰梯形,由斜二測(cè)畫(huà)法,畫(huà)出這個(gè)梯形的直觀圖O′A′B′C′,在直觀圖中的梯形的高為( 。
A、
2
4
B、
2
3
C、
2
2
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=
x+2
,則f(0)=( 。
A、2
B、4
C、0
D、
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

將四個(gè)相同的紅球和四個(gè)相同的黑球排成一排,然后從左至右依次給它們賦以編號(hào)1,2,…,8,則紅球的編號(hào)之和等于黑球編號(hào)之和的排法有
 
種.

查看答案和解析>>

同步練習(xí)冊(cè)答案