已知雙曲線C:
y2
16
-
x2
4
=1,點(diǎn)P與雙曲線C的焦點(diǎn)不重合,若點(diǎn)P關(guān)于雙曲線C的上、下焦點(diǎn)的對(duì)稱點(diǎn)分別為A、B,點(diǎn)Q在雙曲線C的上支上,點(diǎn)P關(guān)于點(diǎn)Q的對(duì)稱點(diǎn)為P1,則|P1A|-|P1B|=
 
考點(diǎn):雙曲線的簡(jiǎn)單性質(zhì)
專題:圓錐曲線的定義、性質(zhì)與方程
分析:設(shè)雙曲線的上下焦點(diǎn)分別為F,F(xiàn)′,連接QF,QF′.運(yùn)用對(duì)稱和三角形的中位線定理,結(jié)合雙曲線的定義,即可得到結(jié)論
解答: 解:設(shè)雙曲線的上下焦點(diǎn)分別為F,F(xiàn)′,連接QF,QF′.
由點(diǎn)P關(guān)于雙曲線C的上、下焦點(diǎn)的對(duì)稱點(diǎn)分別為A、B,
則F為PA的中點(diǎn),F(xiàn)′為PB的中點(diǎn),
由點(diǎn)Q在雙曲線C的上支上,點(diǎn)P關(guān)于點(diǎn)Q的對(duì)稱點(diǎn)P1,
則Q為PP1的中點(diǎn),
由中位線定理可得,|P1A|=2|QF|,
|P1B|=2|QF′|,
由雙曲線的定義可得|QF′|-|QF|=2a=8,
則|P1A|-|P1B|=2(|QF|-|QF′|)=-2×8=-16.
故答案為:-16.
點(diǎn)評(píng):本題考查雙曲線的定義,主要考查三角形的中位線定理的運(yùn)用,考查運(yùn)算能力,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在三棱錐S-ABC中,SA⊥平面ABC,AB⊥AC.
(Ⅰ)求證:AB⊥SC;
(Ⅱ)設(shè)D,F(xiàn)分別是AC,SA的中點(diǎn),點(diǎn)G是△ABD的重心,求證:FG∥平面SBC;
(Ⅲ)若SA=AB=2,AC=4,求二面角A-FD-G的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)滿足:當(dāng)x1,x2∈(0,+∞)時(shí),(x1-x2)[f(x1)-f(x2)]>0恒成立.設(shè)a=f(-4),b=f(1),c=f(3),則a,b,c的大小關(guān)系為( 。
A、a<b<c
B、b<a<c
C、b<c<a
D、c<b<a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線PA與圓O相切于點(diǎn)A,PBC是過點(diǎn)O的割線,∠APE=∠CPE,點(diǎn)H是線段ED的中點(diǎn).
(1)證明:A,E,F(xiàn),D四點(diǎn)共圓;
(2)證明:PF2=PB•PC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某個(gè)幾何體的三視圖如圖所示.根據(jù)圖中標(biāo)出的尺寸(單位:cm).可得這個(gè)幾何體的體積是    cm3
( 。
A、
4
3
B、
2
3
3
C、
2
3
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

苗圃中種了一行某種樹苗,共20課,現(xiàn)在樹苗長(zhǎng)大了,為了給樹苗留足夠的生長(zhǎng)空間,決定移走12棵,余8棵,要求(1)原來兩端的樹苗不移走,(2)原來相鄰的樹苗不同時(shí)留下,則求不同的移樹苗的方法.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,圓O的直徑AB=8,C為圓周上一點(diǎn),BC=4,過C作圓的切線l,過A作直線l的垂線AD,D為垂足,AD與圓O交于點(diǎn)E,則線段AE的長(zhǎng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:(n+1)an=(n-1)an-1+2,求數(shù)列{an}的通項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=lg(1-
2
cosx)+
1+
2
cosx
的定義域.

查看答案和解析>>

同步練習(xí)冊(cè)答案