設(shè)函數(shù).
(1) 試問函數(shù)f(x)能否在x= 時取得極值?說明理由;
(2) 若a= ,當(dāng)x∈[,4]時,函數(shù)f(x)與g(x)的圖像有兩個公共點(diǎn),求c的取值范圍.

(1)f(x)在x=-1處無極值.  (2)或c=

解析試題分析:解:(1) 由題意f′(x)=x2-2ax-a,
假設(shè)在x= -1時f(x)取得極值,則有f′(-1)=1+2a-a=0,∴a=-1,
而此時,f′(x)=x2+2x+1=(x+1)2≥0,函數(shù)f(x)在R上為增函數(shù),無極值.
這與f(x)在x=-1有極值矛盾,所以f(x)在x=-1處無極值.
(2) 設(shè)f(x)=g(x),則有x3-x2-3x-c=0,∴c=x3-x2-3x,
設(shè)F(x)= x3-x2-3x,G(x)=c,令F′(x)=x2-2x-3=0,解得x1=-1或x=3.
列表如下:

x
-3
(-3,-1)
-1
(-1,3)
3
(3,4)
4
F′(x)
 
+
0
-
0
+
 
F(x)
-9



-9

-
由此可知:F(x)在(-3,-1)、(3,4)上是增函數(shù),在(-1,3)上是減函數(shù).
當(dāng)x=-1時,F(xiàn)(x)取得極大值;當(dāng)x=3時,F(xiàn)(x)取得極小值
F(-3)=F(3)=-9,而.
如果函數(shù)f(x)與g(x)的圖像有兩個公共點(diǎn),則函數(shù)F(x)與G(x)有兩個公共點(diǎn),
所以或c=
考點(diǎn):導(dǎo)數(shù)的運(yùn)用
點(diǎn)評:主要是考查了導(dǎo)數(shù)在研究函數(shù)單調(diào)性以及函數(shù)極值中的運(yùn)用,屬于基礎(chǔ)題。

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)
(1)若在定義域上為增函數(shù),求實(shí)數(shù)的取值范圍;
(2)求函數(shù)在區(qū)間上的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知正項(xiàng)數(shù)列中,,點(diǎn)在拋物線上;數(shù)列中,點(diǎn)在過點(diǎn)(0, 1),以為斜率的直線上。
(1)求數(shù)列的通項(xiàng)公式;
(2)若   , 問是否存在,使成立,若存在,求出值;若不存在,說明理由;
(3)對任意正整數(shù),不等式恒成立,求正數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

甲廠以x千克/小時的速度勻速生產(chǎn)某種產(chǎn)品(生產(chǎn)條件要求1≤x≤10),每一小時可獲得的利潤是100(5x+1﹣)元.
(1)求證:生產(chǎn)a千克該產(chǎn)品所獲得的利潤為100a(5+)元;
(2)要使生產(chǎn)900千克該產(chǎn)品獲得的利潤最大,問:甲廠應(yīng)該選取何種生產(chǎn)速度?并求此最大利潤.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

提高過江大橋的車輛通行能力可改善整個城市的交通狀況,在一般情況下,大橋上的車流速度v(單位:千米/小時)是車流密度(單位:輛/千米)的函數(shù),當(dāng)橋上的車流密度達(dá)到200輛/千米時,造成堵塞,此時車速度為0;當(dāng)車流密度不超過20輛/千米時,車流速度為60千米,/小時,研究表明:當(dāng)時,車流速度v是車流密度的一次函數(shù).
(Ⅰ)當(dāng)時,求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車流密度為多大時,車流量(單位時間內(nèi)通過橋上某觀測點(diǎn)的車輛數(shù),單位:輛/小時) 可以達(dá)到最大,并求出最大值.(精確到1輛/小時)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)函數(shù).
(I)當(dāng)時,求的單調(diào)區(qū)間;
(II)若恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知二次函數(shù)的二次項(xiàng)系數(shù)為,滿足不等式的解集為(1,3),且方程有兩個相等的實(shí)根,求的解析式.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知函數(shù)是奇函數(shù),是偶函數(shù)。
(1)求的值;
(2)設(shè)對任意恒成立,求實(shí)數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

某造船公司年造船量是20艘,已知造船x艘的產(chǎn)值函數(shù)為R(x)=3700x+45x2-10x3(單位:萬元),成本函數(shù)為C(x)=460x+5000(單位:萬元),又在經(jīng)濟(jì)學(xué)中,函數(shù)f(x)的邊際函數(shù)Mf(x)定義為Mf(x)=f(x+1)-f(x).
(1)求利潤函數(shù)P(x)及邊際利潤函數(shù)MP(x);(提示:利潤=產(chǎn)值-成本)
(2)問年造船量安排多少艘時,可使公司造船的年利潤最大?

查看答案和解析>>

同步練習(xí)冊答案