7.已知一扇形的弧所對的圓心角為54°,半徑r=20cm,則扇形的周長為(6π+40)cm.

分析 由條件利用扇形的弧長公式,求得扇形的弧長l的值,可得扇形的周長為l+2r 的值.

解答 解:∵一扇形的弧所對的圓心角為54°,半徑r=20cm,
則扇形的弧長l=α•r=$\frac{54}{180}$π•20=6π(cm),
則扇形的周長為l+2r=6π+2×20=(6π+40)cm,
故答案為:(6π+40)cm.

點評 本題主要考查角度與弧度的互化,弧長公式的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.當(dāng)曲線y=$\sqrt{4-{x}^{2}}$與直線kx-y-2k+4=0有兩個相異的交點時,實數(shù)k的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.($\frac{5}{12}$,$\frac{3}{4}$]C.($\frac{3}{4}$,1]D.($\frac{3}{4}$,+∞]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.△ABC中,A=60°,B=45°,a=10,則b的值( 。
A.5$\sqrt{2}$B.10$\sqrt{2}$C.$\frac{10\sqrt{6}}{3}$D.5$\sqrt{6}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)集合U={1,2,3,4},集合A={x∈N|x2-5x+4<0},則∁UA等于( 。
A.{1,2}B.{1,4}C.{2,4}D.{1,3,4}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.中國傳統(tǒng)文化中很多內(nèi)容體現(xiàn)了數(shù)學(xué)的對稱美,如圖所示的太極圖是由黑白兩個魚形紋組成的圓形圖案,充分展現(xiàn)了相互轉(zhuǎn)化、對稱統(tǒng)一的形式美、和諧美.給出定義:能夠?qū)AO的周長和面積同時平分的函數(shù)稱為這個圓的“優(yōu)美函數(shù)”.給出下列命題:
①對于任意一個圓O,其“優(yōu)美函數(shù)”有無數(shù)個;
②函數(shù)f(x)=ln(x2+$\sqrt{{x}^{2}+1}$可以是某個圓的“優(yōu)美函數(shù)”;
③正弦函數(shù)y=sinx可以同時是無數(shù)個圓的“優(yōu)美函數(shù)”;
④函數(shù)y=f(x)是“優(yōu)美函數(shù)”的充要條件為函數(shù)y=f(x)的圖象是中心對稱圖形.
其中正確的命題是①③(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知集合A={m,1},B={m2,-1},且A=B,則實數(shù)m的值為(  )
A.1B.-1C.0D.±1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.若函數(shù)g(x)=alnx,對任意x∈[1,e],都有g(shù)(x)≥-x2+(a+2)x恒成立,則實數(shù)a的取值范圍是a≤-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.(1)($\frac{9}{4}$)${\;}^{\frac{1}{2}}}$-(-2009)0-($\frac{8}{27}$)${\;}^{\frac{2}{3}}}$+($\frac{3}{2}$)-2;
(2)log25625+lg 0.001+ln$\sqrt{e}$+${2^{-1+{{log}_2}3}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知數(shù)列{an}的前n項和為Sn,且a1=a(a∈R),an+1=$\left\{\begin{array}{l}{a_n-3,a_n>3}\\{2a_n,a_n≤3}\end{array}\right.$,n∈N*;
(1)若0<an≤6,求證:0<an+1≤6;
(2)若a=5,求S2016
(3)若a=$\frac{3}{2^m-1}$(m∈N*),求S4m+2的值.

查看答案和解析>>

同步練習(xí)冊答案