16.(1)($\frac{9}{4}$)${\;}^{\frac{1}{2}}}$-(-2009)0-($\frac{8}{27}$)${\;}^{\frac{2}{3}}}$+($\frac{3}{2}$)-2;
(2)log25625+lg 0.001+ln$\sqrt{e}$+${2^{-1+{{log}_2}3}}$.

分析 (1)根據(jù)指數(shù)冪的運(yùn)算性質(zhì)計(jì)算即可,
(2)根據(jù)對(duì)數(shù)的運(yùn)算性質(zhì)計(jì)算即可.

解答 解:(1)原式=$\frac{3}{2}$-1-$\frac{4}{9}$+$\frac{4}{9}$=$\frac{1}{2}$.
(2)原式=2-3+$\frac{1}{2}$+$\frac{1}{2}$×3=1.

點(diǎn)評(píng) 本題考查了指數(shù)冪的運(yùn)算性質(zhì)和對(duì)數(shù)的運(yùn)算性質(zhì),屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.對(duì)于一組向量$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$(n∈N*),令$\overrightarrow{{S}_{n}}$=$\overrightarrow{{a}_{1}}$+$\overrightarrow{{a}_{2}}$+$\overrightarrow{{a}_{3}}$+…+$\overrightarrow{{a}_{n}}$,如果存在$\overrightarrow{{a}_{p}}$(p∈{1,2,3,…,n},使得|$\overrightarrow{{a}_{p}}$|≥|$\overrightarrow{{S}_{n}}$-$\overrightarrow{{a}_{p}}$|,那么稱$\overrightarrow{{a}_{p}}$是該向量組的“h向量”.
(1)設(shè)$\overrightarrow{{a}_{n}}$=(n,x+n)(n∈N*),若$\overrightarrow{{a}_{3}}$是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,求實(shí)數(shù)x的取值范圍;
(2)若$\overrightarrow{{a}_{n}}$=(($\frac{1}{3}$)n-1•(-1)n(n∈N*),向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$,…,$\overrightarrow{{a}_{n}}$是否存在“h向量”?給出你的結(jié)論并說明理由;
(3)已知$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$均是向量組$\overrightarrow{{a}_{1}}$,$\overrightarrow{{a}_{2}}$,$\overrightarrow{{a}_{3}}$的“h向量”,其中$\overrightarrow{{a}_{1}}$=(sinx,cosx),$\overrightarrow{{a}_{2}}$=(2cosx,2sinx).設(shè)在平面直角坐標(biāo)系中有一點(diǎn)列Q1.Q2,Q3,…,Qn滿足:Q1為坐標(biāo)原點(diǎn),Q2為$\overrightarrow{{a}_{3}}$的位置向量的終點(diǎn),且Q2k+1與Q2k關(guān)于點(diǎn)Q1對(duì)稱,Q2k+2與Q2k+1(k∈N*)關(guān)于點(diǎn)Q2對(duì)稱,求|$\overrightarrow{{Q}_{2013}{Q}_{2014}}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知一扇形的弧所對(duì)的圓心角為54°,半徑r=20cm,則扇形的周長(zhǎng)為(6π+40)cm.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.?dāng)?shù)列{an}中,a1=1,an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$,則數(shù)列{an}的通項(xiàng)公式an=$\frac{2}{n+1}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,在平面直角坐標(biāo)系xOy中,已知以M為圓心的圓M:x2+y2-12x-14y+60=0及其上一點(diǎn)A(2,4).
(1)設(shè)圓N與x軸相切,與圓M外切,且圓心N在直線x=6上,求圓N的標(biāo)準(zhǔn)方程;
(2)設(shè)平行于OA的直線l與圓M相交于B,C兩點(diǎn),且|BC|=|OA|,求直線l的方程;
(3)設(shè)點(diǎn)T(t,0)滿足:存在圓M上的兩點(diǎn)P和Q,使得$\overrightarrow{TA}$+$\overrightarrow{TP}$=$\overrightarrow{TQ}$,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.下面的表述:
①6=p;   ②a=3×5+2;   ③b+3=5;   ④p=((3x+2)-4)x+3;⑤a=a3;  ⑥x,y,z=5;   ⑦ab=3;     ⑧x=y+2+x.其中是賦值語句的序號(hào)有②④⑤⑧.(注:要求把正確的表述全填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知正項(xiàng)數(shù)列{an}滿足:a1=$\frac{3}{2}$,an+1=$\frac{3{a}_{n}}{2{a}_{n}+3}$.
(1)證明{$\frac{1}{{a}_{n}}$}為等差數(shù)列,并求通項(xiàng)an;
(2)若數(shù)列{bn}滿足bn•an=3(1-$\frac{1}{{2}^{n}}$),求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.若函數(shù)f(x)=ax2+2x是奇函數(shù),則f($\frac{1}{2}$)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知直線l1:(k-1)x+y+2=0和直線l2:8x+(k+1)y+k-1=0平行,則k的值是(  )
A.3B.-3C.3或-3D.$\sqrt{7}$或-$\sqrt{7}$

查看答案和解析>>

同步練習(xí)冊(cè)答案