(2013•虹口區(qū)一模)已知函數(shù)f(x)=2sinx•sin(
π
3
-x)+
3
sinx•cosx+cos2x

(1)求函數(shù)f(x)的最小正周期,最大值及取最大值時(shí)相應(yīng)的x值;
(2)如果0≤x≤
π
2
,求f(x)的取值范圍.
分析:(1)利用三角函數(shù)的倍角公式與輔助角公式將f(x)轉(zhuǎn)化為f(x)=2sin(2x+
π
6
),即可求得函數(shù)f(x)的最小正周期,最大值及取最大值時(shí)相應(yīng)的x值;
(2)由0≤x≤
π
2
可求得
π
6
≤2x+
π
6
6
,利用正弦函數(shù)的性質(zhì)即可求得f(x)的取值范圍.
解答:解:(1)f(x)=2sinx(
3
2
cosx-
1
2
sinx)+
3
sinxcosx+cos2x
=2
3
sinxcosx+cos2x-sin2x
=
3
sin2x+cos2x
=2sin(2x+
π
6
)…(6分)
∴f(x)的最小正周期T=
2
=π.
當(dāng)2x+
π
6
=2kπ+
π
2
,x=kπ+
π
6
(k∈z)時(shí),f(x)取得最大值2.…(10分)
(2)由0≤x≤
π
2
,得
π
6
≤2x+
π
6
6
,
-
1
2
≤sin(2x+
π
6
)≤1,
∴f(x)的值域?yàn)閇-1,2]…(14分)
點(diǎn)評(píng):本題考查三角函數(shù)中的恒等變換應(yīng)用,考查正弦函數(shù)的性質(zhì),考查轉(zhuǎn)化與運(yùn)算能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)數(shù)列{an}滿足an=
n   ,當(dāng)n=2k-1
ak , 當(dāng)n=2k
,其中k∈N*,設(shè)f(n)=a1+a2+…+a2n-1+a2n,則f(2013)-f(2012)等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)關(guān)于z的方程
.
1+i0z
-i
1
2
i
1-i0z
.
=2+i2013
(其中i是虛數(shù)單位),則方程的解z=
1-2i
1-2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)在下面的程序框圖中,輸出的y是x的函數(shù),記為y=f(x),則f-1(
12
)
=
-1
-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)在△ABC中,AB=2
3
,AC=2,且∠B=
π
6
,則△ABC的面積為
3
或2
3
3
或2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•虹口區(qū)一模)如果函數(shù)y=f(x)的定義域?yàn)镽,對(duì)于定義域內(nèi)的任意x,存在實(shí)數(shù)a使得f(x+a)=f(-x)成立,則稱此函數(shù)具有“P(a)性質(zhì)”.
(1)判斷函數(shù)y=sinx是否具有“P(a)性質(zhì)”,若具有“P(a)性質(zhì)”求出所有a的值;若不具有“P(a)性質(zhì)”,請(qǐng)說(shuō)明理由.
(2)已知y=f(x)具有“P(0)性質(zhì)”,且當(dāng)x≤0時(shí)f(x)=(x+m)2,求y=f(x)在[0,1]上的最大值.
(3)設(shè)函數(shù)y=g(x)具有“P(±1)性質(zhì)”,且當(dāng)-
1
2
≤x≤
1
2
時(shí),g(x)=|x|.若y=g(x)與y=mx交點(diǎn)個(gè)數(shù)為2013個(gè),求m的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案