2.若平面向量$\vec a=(2,1)$和$\vec b=(x-1,-x)$垂直,則$|\vec a+\vec b|$=$\sqrt{10}$.

分析 根據(jù)$\overrightarrow{a}⊥\overrightarrow$便可得出$\overrightarrow{a}•\overrightarrow=0$,從而求出x的值,從而得出$\overrightarrow{a}+\overrightarrow$的坐標(biāo),進(jìn)而求出$|\overrightarrow{a}+\overrightarrow|$的值.

解答 解:$\overrightarrow{a}⊥\overrightarrow$;
∴$\overrightarrow{a}•\overrightarrow=2(x-1)+(-x)=0$;
∴x=2;
∴$\overrightarrow=(1,-2)$;
∴$\overrightarrow{a}+\overrightarrow=(3,-1)$;
∴$|\overrightarrow{a}+\overrightarrow|=\sqrt{10}$.
故答案為:$\sqrt{10}$.

點(diǎn)評(píng) 考查向量垂直的充要條件,向量數(shù)量積的坐標(biāo)運(yùn)算,根據(jù)向量坐標(biāo)求向量長(zhǎng)度.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.如圖:在空間四邊形ABCD中,已知AB⊥BC,AB⊥BD,BC⊥CD且AB=BC=6,BD=8,E為AD中點(diǎn),求異面直線BE與CD所成角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.如圖,直三棱柱ABC-A1B1C1中,△ABC是等邊三角形,D是BC的中點(diǎn).
(1)求證:A1B∥平面ADC1;
(2)若AB=BB1,求A1D與平面ADC1所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)f(x)=ax+cosx在R上是單調(diào)函數(shù),則實(shí)數(shù)a的取值范圍是(  )
A.[1,+∞)B.(1,+∞)C.(-∞,-1]∪[1,+∞)D.(-∞,-1)∪(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

17.設(shè)函數(shù)$f(x)=cos(2x-\frac{π}{2})$,x∈R,則f(x)是( 。
A.最小正周期為π的奇函數(shù)B.最小正周期為π的偶函數(shù)
C.最小正周期為$\frac{π}{2}$的奇函數(shù)D.最小正周期為$\frac{π}{2}$的偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.在如圖所示程序框圖中,任意輸入一次x(0≤x≤1)與y(0≤y≤1),則能輸出“恭喜中獎(jiǎng)!”的概率為( 。
A.$\frac{1}{3}$B.$\frac{1}{2}$C.$\frac{2}{3}$D.$\frac{3}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.一個(gè)袋中裝有10個(gè)大小相同的黑球,白球和紅球.已知從袋中任意摸出2個(gè)球,至少得到1個(gè)白球的概率是$\frac{7}{9}$.從袋中任意摸出3個(gè)球,記得到白球的個(gè)數(shù)為ξ,則隨機(jī)變量ξ的數(shù)學(xué)期望Eξ=$\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.關(guān)于函數(shù)f(x)=4sin(2x+$\frac{π}{3}$)(x∈R)有下列命題,其中正確的是②.
①y=f(x)的表達(dá)式可改寫(xiě)為y=4cos(2x+$\frac{π}{3}$)(x∈R)
②y=f(x)的圖象關(guān)于點(diǎn)(-$\frac{π}{6}$,0)對(duì)稱(chēng);
③y=f(x)的最小正周期為2π;
④y=f(x)的圖象的一條對(duì)稱(chēng)軸為x=-$\frac{π}{6}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.焦距是10,虛軸長(zhǎng)是8的雙曲線的標(biāo)準(zhǔn)方程為$\frac{x^2}{9}-\frac{y^2}{16}=1$或$\frac{y^2}{9}-\frac{x^2}{16}=1$.

查看答案和解析>>

同步練習(xí)冊(cè)答案