分析 設(shè)白球的個數(shù)為x,則紅球和黑球的個數(shù)為10-x,記兩個都不是白球的事件為A,
則至少有一個白球的事件與事件A為對立事件,由此求出白球的個數(shù);
得出ξ的取值可能為0,1,2,3,求出ξ的分布列和數(shù)學(xué)期望.
解答 解:設(shè)白球的個數(shù)為x,則黑球和紅球的個數(shù)為10-x;
記兩個都不是白球的事件為A,則至少有一個白球的事件與事件A為對立事件;
所以p(A)=1-$\frac{7}{9}$=$\frac{2}{9}$=$\frac{{C}_{10-x}^{2}}{{C}_{10}^{2}}$,解得x=5,
所以白球的個數(shù)為5;
從袋中任意摸出3個球,到白球的個數(shù)ξ的取值可能為:0,1,2,3;
則P(ξ=0)=$\frac{{C}_{5}^{0}{•C}_{5}^{3}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
P(ξ=1)=$\frac{{C}_{5}^{1}{•C}_{5}^{2}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(ξ=2)=$\frac{{C}_{5}^{2}{•C}_{5}^{1}}{{C}_{10}^{3}}$=$\frac{5}{12}$,
P(ξ=3)=$\frac{{C}_{5}^{3}{•C}_{5}^{0}}{{C}_{10}^{3}}$=$\frac{1}{12}$,
所以ξ的分布列為:
ξ | 0 | 1 | 2 | 3 |
P | $\frac{1}{12}$ | $\frac{5}{12}$ | $\frac{5}{12}$ | $\frac{1}{12}$ |
點評 本題考查了離散型隨機變量的分布列與數(shù)學(xué)期望的計算問題,是基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角三角形 | B. | 等腰三角形 | C. | 鈍角三角形 | D. | 直角三角形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 函數(shù)$y=sin(2x+\frac{π}{3})$在區(qū)間$(-\frac{π}{3},\frac{π}{6})$內(nèi)單調(diào)遞增 | |
B. | 函數(shù)y=cos4x的最小正周期為2π | |
C. | 函數(shù)y=cos(x+$\frac{π}{3}$)的圖象是關(guān)于點($\frac{π}{6}$,0)成中心對稱的圖形 | |
D. | 函數(shù)y=tan(x+$\frac{π}{3}$)的圖象是關(guān)于直線x=$\frac{π}{6}$成軸對稱的圖形 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 32 | B. | $32\sqrt{7}$ | C. | $16\sqrt{7}$ | D. | $64\sqrt{7}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{21}{4}$ | C. | $\frac{17}{4}$ | D. | 3 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com