已知定義域為R的函數(shù)f(x)滿足f(-x)=-f(x+2),當x>1時,f(x)單調(diào)遞減,如果1+x1x2<x1+x2<2,則f(x1)+f(x2)的值


  1. A.
    恒小于0
  2. B.
    恒大于0
  3. C.
    可能為0
  4. D.
    可正可負
B
分析:由已知不妨可設x1<1,x2>1,則2-x1>x2>1利用x>1時,f(x)單調(diào)遞減,且函數(shù)y=f(x)滿足f(2+x)=-f(-x),可求
解答:由1+x1x2<x1+x2<2,
可得,x1+x2<2,x1x2<1,且(x1-1)(x2-1)<0
不妨設x1<1,x2>1,則2-x1>x2>1
∵當x>1時,f(x)單調(diào)遞減,
∴f(2-x1)<f(x2
∵函數(shù)y=f(x)滿足f(2+x)=-f(-x),即f(2-x)=-f(x)
∴f(x1)-f(x2
∴f(x1)+f(x2)的值恒大于0,
故選B
點評:本題考查函數(shù)的單調(diào)性,考查恒成立問題,正確運用函數(shù)的單調(diào)性是關鍵.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

(2010•石家莊二模)已知定義域為R的函數(shù)f(x)在(1,+∞)上為減函數(shù),且函數(shù)y=f(x+1)為偶函數(shù),則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(x)f(x+2)=5,若f(2)=3,則f(2012)=
5
3
5
3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)在(4,+∞)上為減函數(shù),且函數(shù)y=f(x)的對稱軸為x=4,則( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)=
-2x+a2x+1
是奇函數(shù)
(1)求a值;
(2)判斷并證明該函數(shù)在定義域R上的單調(diào)性;
(3)若對任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求實數(shù)k的取值范圍;
(4)設關于x的函數(shù)F(x)=f(4x-b)+f(-2x+1)有零點,求實數(shù)b的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知定義域為R的函數(shù)f(x)滿足f(4-x)=-f(x),當x<2時,f(x)單調(diào)遞減,如果x1+x2>4且(x1-2)(x2-2)<0,則f(x1)+f(x2)的值(  )

查看答案和解析>>

同步練習冊答案