已知數(shù)列{an}中,滿足a1=0,an+1-an=2n,那么a2010的值為( 。
A、2008×2007
B、20092
C、2009×2008
D、2010×2009
考點:數(shù)列遞推式
專題:點列、遞歸數(shù)列與數(shù)學(xué)歸納法
分析:由已知遞推式利用累加法求出數(shù)列{an}的通項公式,則答案可求.
解答: 解:在數(shù)列{an}中,由a1=0,an+1-an=2n,得
a2-a1=2•1.
a3-a2=2•2.
a4-a3=2•3.

an-an-1=2(n-1).
累加得:an=2(1+2+…+n-1)=2×
n(n-1)
2
=n(n-1)

∴a2010=2010×2009.
故選:D.
點評:本題考查了數(shù)列遞推式,考查了累加法求數(shù)列的通項公式,是中檔題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

若p=
5
-1
2
,a=pm,b=pn,且m>n,則a,b大小關(guān)系為( 。
A、a>bB、a<b
C、a=bD、無法判斷大小

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若數(shù)列{an}滿足:a1=19,an+1=an-2(n∈N+),則數(shù)列{an}的前n項和最大時,n的值是( 。
A、9B、10C、11D、12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列各組函數(shù)中,表示同一個函數(shù)的是(  )
A、f(x)=
x2
,g(x)=x
B、f(x)=logaax(a>0,a≠1),g(x)=
3x3
C、f(x)=x,g(x)=
x2
x
D、f(x)=lnx2,g(x)=2lnx

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若P、Q是兩個非空數(shù)集,定義P與Q的差集P-Q={x|x∈P且x∉Q},已知集合A={x|a<x<0},集合B={x|-b<x<b},其中a,b是滿足|a|≥|b|的整數(shù),在集合A中隨機取一個整數(shù)c,若c屬于差集A-B的概率P1=
2
3
,屬于集合A∩B的概率P2=
1
3
,則整數(shù)a,b應(yīng)滿足的條件是( 。
A、a+3b=-1(b≥1,b∈Z)
B、a+3b=-1,(b≥2,b∈Z)
C、a+3b=2(b≥1,b∈Z)
D、a+3b=2,(b≥2,b∈Z)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知p1(2,-1),p2(0,5)且點p在p1p2的延長線上,|p1p|=2|pp2|,則p的坐標(biāo)(  )
A、(2,-7)
B、(
4
3
,3)
C、(
2
3
,3)
D、(-2,11)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

對于實數(shù)a、b、c有如下命題①若a>b則ac>bc;②若ac2>bc2則a>b;③若a<b<0則a2>ab>b2;④若a>b,
1
a
1
b
則a>0,b<0.其中正確的有( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列計算:①(-2014)0=1;②2m-4=
1
2m4
;③x4+x3=x7;④(ab23=a3b6;⑤
(-35)2
=35,正確的是( 。
A、①B、①②③
C、①③④D、①④⑤

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=sinx的圖象向右平移
π
3
個單位,再將所得圖象上各點的橫坐標(biāo)不變,縱坐標(biāo)伸長到原來的4倍,這樣就得到函數(shù)f(x)的圖象,若g(x)=f(x)cosx+
3

(1)將函數(shù)表示為g(x)=Asin(ωx+φ)+B(其中A,ω>0,φ∈[-
π
2
,
π
2
])的形式;
(2)若函數(shù)g(x)在區(qū)間[-
π
12
,θ]上的最大值為2,求θ的最小值.

查看答案和解析>>

同步練習(xí)冊答案