已知函數(shù)f(x)=,若f(a)=,則a等于 ( )
A.-1或 B.
C.-1 D.1或-
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(五)(解析版) 題型:填空題
已知斜率為2的直線l過拋物線y2=px(p>0)的焦點(diǎn)F,且與y軸相交于點(diǎn)A.若△OAF(O為坐標(biāo)原點(diǎn))的面積為1,則p=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(三)(解析版) 題型:填空題
已知經(jīng)過計(jì)算和驗(yàn)證有下列正確的不等式:+<2,+<2,+<2,根據(jù)以上不等式的規(guī)律,請寫出一個(gè)對正實(shí)數(shù)m,n都成立的條件不等式________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:解答題
已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點(diǎn).
(1)求f(x)的解析式;
(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:填空題
設(shè)f(x)=-x3+x2+2ax,若f(x)在(,+∞)上存在單調(diào)遞增區(qū)間,則a的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動(dòng)練習(xí)(一)(解析版) 題型:選擇題
已知a>1,f(x)=ax +2x,則使f(x)<1成立的一個(gè)充分不必要條件是 ( )
A.-1<x<0 B.-2<x<1
C.-2<x<0 D.0<x<1
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:解答題
(2014·長春模擬)已知向量=,=,定義函數(shù)f(x)=·.
(1)求函數(shù)f(x)的表達(dá)式,并指出其最大值和最小值.
(2)在銳角△ABC中,角A,B,C的對邊分別為a,b,c,且f(A)=1,bc=8,求△ABC的面積S.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第四章平面向量、數(shù)系擴(kuò)充與復(fù)數(shù)引入(解析版) 題型:選擇題
(2013·江西高考)復(fù)數(shù)z=i(-2-i)(i為虛數(shù)單位)在復(fù)平面內(nèi)所對應(yīng)的點(diǎn)在( )
A.第一象限 B.第二象限
C.第三象限 D.第四象限
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:選擇題
(2014·荊門模擬)若實(shí)數(shù)a,b,c成公差不為0的等差數(shù)列,則下列不等式不成立的是( )
A.|b-a+|≥2 B.a3b+b3c+c3a≥a4+b4+c4
C.b2>ac D.|b|-|a|≤|c|-|b|
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com