已知函數(shù)f(x)=xk+b(其中k,b∈R且k,b為常數(shù))的圖象經(jīng)過A(4,2)、B(16,4)兩點.

(1)求f(x)的解析式;

(2)如果函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,解關(guān)于x的不等式:g(x)+g(x-2)>2a(x-2)+4.

 

(1)f(x)=.

(2)①若a≤2,則不等式的解集為{x|x>2};

②若a>2,則不等式的解集為{x|x>a}.

【解析】(1)⇒b=0,k=⇒f(x)=.

(2)設(shè)M(x,y)是曲線y=g(x)上任意一點,由于函數(shù)g(x)與f(x)的圖象關(guān)于直線y=x對稱,所以M(x,y)關(guān)于直線y=x的對稱點M′(y,x)必在曲線y=f(x)上,所以x=,即y=x2,所以g(x)=x2(x≥0),于是

g(x)+g(x-2)>2a(x-2)+4

?

?

①若a≤2,則不等式的解集為{x|x>2};

②若a>2,則不等式的解集為{x|x>a}.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(六)(解析版) 題型:選擇題

函數(shù)f(x)=-+log2x的一個零點落在下列哪個區(qū)間內(nèi)(  )

A.(0,1) B.(1,2) C.(2,3) D.(3,4)

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(二)(解析版) 題型:選擇題

若函數(shù)y=f(x)(x∈R)滿足f(x+2)=f(x),且x∈[-1,1]時,f(x)=|x|,函數(shù)g(x)=,則函數(shù)h(x)=f(x)-g(x)在區(qū)間[-5,5]上的零點的個數(shù)為(  )

A.10 B.9 C.8 D.7

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:選擇題

已知g(x)=loga|x+1|(a>0且a≠1)在(-1,0)上有g(shù)(x)>0,則f(x)=a|x-1|(  )

A.在(-∞,0)上是遞增的

B.在(-∞,0)上是遞減的

C.在(-∞,-1)上是遞增的

D.在(-∞,-1)上是遞減的

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(三)(解析版) 題型:選擇題

在數(shù)列{an}中,a1=1,an+1-an=n(n∈N*),則a100的值為(  )

A.5 050 B.5 051 C.4 950 D.4 951

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:填空題

函數(shù)y=f(x)為定義在R上的減函數(shù),函數(shù)y=f(x-1)的圖象關(guān)于點(1,0)對稱,x,y滿足不等式f(x2-2x)+f(2y-y2)≤0,M(1,2),N(x,y),O為坐標(biāo)原點,則當(dāng)1≤x≤4時,的取值范圍為________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)考前復(fù)習(xí)沖刺穿插滾動練習(xí)(一)(解析版) 題型:選擇題

已知函數(shù)f(x)=,若f(a)=,則a等于 (  )

A.-1或 B.

C.-1 D.1或-

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第四章平面向量、數(shù)系擴充與復(fù)數(shù)引入(解析版) 題型:填空題

(2013·重慶高考)在OA為邊,OB為對角線的矩形中,=(-3,1),=(-2,k),則實數(shù)k=________.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014年高考數(shù)學(xué)人教版評估檢測 第六章 不等式、推理與證明(解析版) 題型:填空題

(2014·黃岡模擬)已知a,b都是正實數(shù),函數(shù)y=2aex+b的圖象過(0,1)點,則+的最小值是________.

 

查看答案和解析>>

同步練習(xí)冊答案