2.設(shè)f(x)=x3,則函數(shù)y=f(a-bx)(其中a,b∈R)的導函數(shù)是( 。
A.y′=3(a-bx)B.y′=2-3b(a-bx)2C.y′=-3b(a-bx)2D.y′=3b(a-bx)2

分析 利用導數(shù)的運算法則即可得出.

解答 解:y=f(a-bx)=(a-bx)3,
∴y′=3(a-bx)2×(-b)=-3b(a-bx)2
故選:C.

點評 本題考查了導數(shù)的運算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

12.拋物線N1:y=ax2+bx+c與拋物線N2:y=-ax2+dx+e的頂點分別為P1(x1,y1)與P2(x2,y2),且兩拋物線相交于點A(12,21)與B(28,3)(均異于頂點),則$\frac{{{x_1}+{x_2}}}{{{y_1}+{y_2}}}$=$\frac{5}{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.過雙曲線$\frac{x^2}{4}-\frac{y^2}{5}=1$的右焦點做傾斜角為45°的弦AB.求:
(1)求弦AB的中點C到右焦點F2的距離;
(2)求弦AB的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知函數(shù)f(x)=ex-ax-1(a∈R).
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)求在f(x)在[1,2]上的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.已知回歸方程為$\hat y=8x-70$,則該方程在樣本(10,13)處的殘差為( 。
A.10B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.復數(shù)$z=\frac{i}{-2-i}$(i為虛數(shù)單位)在復平面內(nèi)對應的點所在象限為( 。
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知函數(shù)f(x)=$\frac{{\sqrt{4x+5-{x^2}}}}{x+1}$的定義域為集合A,函數(shù)g(x)=lg(-x2+2x+m)的定義域為集合B.
(1)當m=3時,求集合A∩B;
(2)若A∩B={x|-1<x<4},求實數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

11.已知函數(shù)f(x)=ex-alnx-a,其中常數(shù)a>0.
(1)當a=e時,求函數(shù)f(x)的最小值;
(2)若不等式f(x)≥0對任意x∈(0,+∞)恒成立,求實數(shù)a的取值范圍;
(3)若函數(shù)y=f(x)有兩個零點x1,x2(其中0<x1<x2),求證:$\frac{1}{a}$<x1<1<x2<a.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.設(shè)函數(shù)f(x)=$\frac{1}{2}$ax2-x-lnx,a∈R
(1)當a=2時,求函數(shù)f(x)的極值;
(2)若f(x)在[2,+∞)上單調(diào)遞增,求a的取值范圍.

查看答案和解析>>

同步練習冊答案