4.設(shè)全集為U實數(shù)集R,M={x||x|≥2},N={x|x2-4x+3<0},則圖中陰影部分所表示的集合是{x|1<x<2}.

分析 由題意,陰影部分所表示的集合是(CUM)∩N,化簡集合M,N,即可得到結(jié)論.

解答 解:由題意可得,M={x||x|≥2}={x|x≥2或x≤-2},N={x|x2-4x+3<0}={x|1<x<3},
圖中陰影部分所表示的集合為(CUM)∩N={x}-2<x<2}∩{x|1<x<3}={x|1<x<2},
故答案為:{x|1<x<2}.

點評 本題主要考查了利用維恩圖表示集合的基本關(guān)系,及絕對值不等式、二次不等式的求解,屬于基礎(chǔ)試題

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.n臺機(jī)床獨立工作,每臺機(jī)床正常工作的概率都是0.99,求n臺機(jī)床都正常工作的概率.借計算器對n=1000給出結(jié)果,用此說明一個大紡織廠為什么要有一支常備的機(jī)修隊伍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.已知$sin(x-\frac{9π}{14})cos\frac{π}{7}+cos(x-\frac{9π}{14})sin\frac{π}{7}=\frac{1}{3}$,則cosx等于( 。
A.$\frac{1}{3}$B.$-\frac{1}{3}$C.$\frac{{2\sqrt{2}}}{3}$D.$±\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.已知向量$\overrightarrow{a}$=(2,3),向量$\overrightarrow$=(x,-2),且$\overrightarrow{a}$與2$\overrightarrow{a}$-$\overrightarrow$共線,則實數(shù)x的值為-$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知向量$\overrightarrow a$是單位向量,向量$\overrightarrow b=({2,2\sqrt{3}})$,若$\overrightarrow a⊥({2\overrightarrow a+\overrightarrow b})$,則$\overrightarrow a$,$\overrightarrow b$的夾角為$\frac{2π}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.給出下列四個命題:
①若命題“若¬p則q”為真命題,則命題“若¬q則p”也是真命題
②直線a∥平面α的充要條件是:直線a?平面α
③“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件;
④若命題p:“?x∈R,x2-x-1>0“,則命題p的否定為:“?x∈R,x2-x-1≤0”
其中真命題的個數(shù)是( 。
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.由不等式$\left\{\begin{array}{l}0≤x≤1\\ 0≤y≤1\end{array}\right.$確定的平面區(qū)域記為Ω1,不等式$\left\{\begin{array}{l}{(x-\frac{1}{2})^2}+{(y-\frac{1}{2})^2}≤\frac{1}{2}\;\;\\ x≥y\\ x+y≥1\\ \;\;\end{array}\right.$確定的平面區(qū)域記為Ω2,在Ω1中隨機(jī)取一點,則該點恰好在Ω2內(nèi)的概率為( 。
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{π}{4}$D.$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.若復(fù)數(shù)z滿足z(2-i)=10+5i(i為虛數(shù)單位),則|z|=( 。
A.25B.10C.5D.$\sqrt{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.在△ABC 中,∠C=$\frac{2π}{3}$,a=6.
(Ⅰ)若c=14,求sinA的值;
(Ⅱ)若△ABC的面積為3$\sqrt{3}$,求c的值.

查看答案和解析>>

同步練習(xí)冊答案