6.設(shè)a=30.4,b=log40.3,c=log43,則(  )
A.a>c>bB.b>c>aC.c>a>bD.c>b>a

分析 利用指數(shù)函數(shù)、對數(shù)函數(shù)的單調(diào)性求解.

解答 解:∵a=30.4>30=1,
b=log40.3<log41=0,
0=log41<c=log43<log44=1,
∴a>c>b.
故選:A.

點(diǎn)評 本題考查三個(gè)數(shù)的大小的比較,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.已知$sin({α+\frac{π}{3}})=-\frac{1}{2}$,$α∈({\frac{2π}{3},π})$,則sinα=$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.如圖,在正三棱柱ABCA1B1C1中,E,F(xiàn)分別為BB1,AC的中點(diǎn).求證:BF∥平面A1EC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.某同學(xué)用五點(diǎn)法畫函數(shù)f(x)=Asin(ωx+φ),(ω>0,|φ|<$\frac{π}{2}$)在某一個(gè)周期內(nèi)的圖象時(shí),列表并填入了部分?jǐn)?shù)據(jù),如表:
ωx+φ0$\frac{π}{2}$π$\frac{3x}{2}$
x$\frac{π}{3}$$\frac{5π}{6}$
Asin(ωx+φ)05-50
(1)請將上表數(shù)據(jù)補(bǔ)充完整,并直接寫出函數(shù)f(x)的解析式f(x)=5sin(2x-$\frac{π}{6}$);
(2)若函數(shù)f(x)的圖象向左平移$\frac{π}{6}$個(gè)單位后對應(yīng)的函數(shù)為g(x),求g(x)的圖象離原點(diǎn)最近的對稱中心(-$\frac{π}{12}$,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.已知函數(shù)$f(x)=\frac{lnx}{x+1}-\frac{{2{f^'}(1)}}{x}$.
(1)求函數(shù)f(x)在點(diǎn)(1,f(1))處的切線方程;
(2)當(dāng)x>0且x≠1時(shí),$f(x)>\frac{lnx}{x-1}+({a^2}-a-2)$,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,四棱錐P-ABCD的底面是平行四邊形,BA=BD=$\sqrt{2}$,AD=2,PA=PD=$\sqrt{5}$,E,F(xiàn)分別是棱AD,PC的中點(diǎn).
(Ⅰ)證明 AD⊥平面PBE;
(Ⅱ)若二面角P-AD-B為60°,求直線EF與平面PBC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知四棱錐A-BCDE,其中AB=BC=AC=BE=1,CD=2,CD⊥面ABC,BE∥CD,F(xiàn)為AD的中點(diǎn).
(Ⅰ)求證:EF∥面ABC;
(Ⅱ)求四棱錐A-BCDE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.拋物線的頂點(diǎn)在原點(diǎn),對稱軸是x軸,拋物線上點(diǎn)(-5,m)到焦點(diǎn)距離是6,則拋物線的方程是( 。
A.y2=-2xB.y2=-4xC.y2=2xD.y2=-4x或y2=4x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.如圖,正方形邊長是2,直線x+y-3=0與正方形交于兩點(diǎn),向正方形內(nèi)投飛鏢,則飛鏢落在陰影部分內(nèi)的概率是$\frac{7}{8}$.

查看答案和解析>>

同步練習(xí)冊答案