計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格“并頒發(fā)”合格證書“.甲、乙、丙三人在理論考試中“合格”的概率依次為,在實際操作考試中“合格”的概率依次為,所有考試是否合格相互之間沒有影響。

1)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大?

2)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;

3)用X表示甲、乙、丙3人計算機(jī)考試獲“合格證書”的人數(shù),求X的分布列和數(shù)學(xué)期望EX。

 

【答案】

1)丙獲得合格證書的可能性大;

11;

111)X的分布列為:

X

0

1

2

3

P

.

【解析】

試題分析:1)記“甲獲得合格證書”為事件A,“乙獲得合格證書”為事件B,“丙獲得合格證書”為事件C,利用概率的計算公式分別得到,

,得到結(jié)論丙獲得合格證書的可能性大.

)設(shè)3人考試后恰恰有2人獲得“合格證書”為事件D,利用獨(dú)立事件概率的計算公式可得.

3)由于.分別計算

即得X的分布列為,進(jìn)一步計算

試題解析:1)記“甲獲得合格證書”為事件A,“乙獲得合格證書”為事件B,“丙獲得合格證書”為事件C,則

,所以丙獲得合格證書的可能性大。 3

2)設(shè)3人考試后恰恰有2人獲得“合格證書”為事件D,則

7

3) .

,由(2,

,

. 10

X的分布列為:

X

0

1

2

3

P

.

考點(diǎn):獨(dú)立事件概率的計算,隨機(jī)變量的分布列及數(shù)學(xué)期望.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

計算機(jī)考試分理論考試與上機(jī)操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”則計算機(jī)考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中合格的概率分別為
3
5
,
3
4
2
3
;在上機(jī)操作考試中合格的概率分別為
9
10
5
6
,
7
8
.所有考試是否合格相互之間沒有影響.
(1)甲、乙、丙三人在同一次計算機(jī)考試中誰獲得“合格證書”可能性最大?
(2)求這三人計算機(jī)考試都獲得“合格證書”的概率;
(3)用ξ表示甲、乙、丙三人在理論考核中合格人數(shù),求ξ的分布列和數(shù)學(xué)期望Eξ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•順義區(qū)一模)計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:
4
5
、
3
4
2
3
,在實際操作考試中“合格”的概率依次為:
1
2
、
2
3
、
5
6
,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市順義區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:解答題

計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:、,在實際操作考試中“合格”的概率依次為:、、,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012年北京市順義區(qū)高考數(shù)學(xué)一模試卷(理科)(解析版) 題型:解答題

計算機(jī)考試分理論考試與實際操作考試兩部分進(jìn)行,每部分考試成績只記“合格”與“不合格”,兩部分考試都“合格”者,則計算機(jī)考試“合格”并頒發(fā)“合格證書”.甲、乙、丙三人在理論考試中“合格”的概率依次為:、、,在實際操作考試中“合格”的概率依次為:、、,所有考試是否合格相互之間沒有影響.
(Ⅰ)假設(shè)甲、乙、丙3人同時進(jìn)行理論與實際操作兩項考試,誰獲得“合格證書”的可能性大;
(Ⅱ)求這3人進(jìn)行理論與實際操作兩項考試后,恰有2人獲得“合格證書”的概率;
(Ⅲ)用X表示甲、乙、丙3人在理論考試中合格的人數(shù),求X的分布列和數(shù)學(xué)期望EX.

查看答案和解析>>

同步練習(xí)冊答案