已知等差數(shù)列{an}是遞增數(shù)列,且不等式x2-6x+8<0的解集為{x|a2<x<a4}.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若bn=
1
anan+1
,求數(shù)列{bn}的前項(xiàng)的和Sn
考點(diǎn):數(shù)列的求和
專題:等差數(shù)列與等比數(shù)列
分析:(1)由已知條件利用不等式知識求出a2=2,a4=4,再由等差數(shù)列的通項(xiàng)公式能求出an
(2)由(1)推導(dǎo)出bn=
1
n(n+1)
=
1
n
-
1
n+1
,由此利用裂項(xiàng)求和法能求出數(shù)列{bn}的前項(xiàng)的和Sn
解答: 解:(1)∵不等式x2-6x+8<0的解集為{x|2<x<4}…(2分)
且等差數(shù)列{an}是遞增數(shù)列
∴a2=2,a4=4,…(4分)
a1+d=2
a1+3d=4

解得a1=1,d=1,
∴等差數(shù)列{an}的首項(xiàng)a1=1,公差d=1,…(6分)
∴an=n…(7分)
(2)∵an=n,b n=
1
anan+1
,
bn=
1
n(n+1)
=
1
n
-
1
n+1
,…(10分)
Sn=(1-
1
2
)+(
1
2
-
1
3
)+…+(
1
n
-
1
n+1
)

=1-
1
n+1

=
n
n+1
.…(13分)
點(diǎn)評:本題考查數(shù)列的通項(xiàng)公式的求法,考查前n項(xiàng)和公式的求法,解題時要認(rèn)真審題,注意裂項(xiàng)求和法的合理運(yùn)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

某設(shè)備的使用年限x(年)和所支出的維修費(fèi)用y(萬元),有如下表所示的統(tǒng)計(jì)資料:
使用年限x(年) 2 3 4 5 6
維修費(fèi)用y(萬元) 2.2 3.8 5.5 6.5 7.0
由資料知
y
對x呈線性相關(guān)關(guān)系,則其回歸直線方程
y
=bx+a為
 
 (其中2×2.2+3×3.8+4×5.5+5×6.5+6×7.0=112.3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法錯誤的是(  )
A、用平行于棱錐底面的平面去截棱錐,底面與截面之間的部分,這樣的多面體叫做棱臺
B、有兩個面平行,其余各個面都是梯形的幾何體一定都是棱臺
C、圓錐的軸截面是等腰三角形
D、用一個平面去截球,截面是圓

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
1-x2
|x+2|-2

(2)f(x)=(
1
2x-1
+
1
2
)•x
;
(3)f(x)=lg(
x2+1
-x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

甲,乙,丙三位學(xué)生獨(dú)立地解同一道題,甲做對的概率為
1
2
,乙、丙做對的概率分別為m和n(m>n),且三位學(xué)生是否做對相互獨(dú)立.記ξ為這三位學(xué)生中做對該題的人數(shù),其分布列為:
ξ  0  1  2  3
 P  
1
4
 a  b
1
24
(Ⅰ)求m,n的值;
(Ⅱ)記事件E={函數(shù)f(x)=-2x2+3ξx+1在區(qū)間[-1,1]上不單調(diào)},求P(E);
(Ⅲ)令λ=12E(ξ)-10,試計(jì)算
λ
(1-2|x|)dx的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某大型養(yǎng)雞場在本年度的第x月的盈利y(萬元)與x的對應(yīng)值如表:
 x 1 2 3 4
 y 65 70 80 90
(1)依據(jù)這些數(shù)據(jù)求出x,y之間的回歸直線方程
y
=
b
x+
a
;
(2)依據(jù)此回歸直線方程預(yù)測第五個月大約能盈利多少萬元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,PA⊥⊙O所在平面,AB是⊙O的直徑,C是⊙O上一點(diǎn),AE⊥PC,AF⊥PB,給出下列結(jié)論:①AE⊥BC;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC,其中真命題的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

拋物線C的頂點(diǎn)在坐標(biāo)原點(diǎn),對稱軸為y軸,若過點(diǎn)M(0,1)任作一直線交拋物線C于A(x1,y1),B(x2,y2)兩點(diǎn),且x1•x2=-4,則拋物線C的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,角A、B、C的對邊分別是a、b、c.若asinA+csinC-
3
asinC=bsinB.則角B等于( 。
A、
6
B、
3
C、
π
3
D、
π
6

查看答案和解析>>

同步練習(xí)冊答案