分析 由Sn=n2an,可得n≥2時,an=Sn-Sn-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.利用“累乘求積”方法即可得出.
解答 解:∵Sn=n2an,∴n≥2時,an=Sn-Sn-1=n2an-(n-1)2an-1,化為:$\frac{{a}_{n}}{{a}_{n-1}}$=$\frac{n-1}{n+1}$.
∴an=$\frac{{a}_{n}}{{a}_{n-1}}$•$\frac{{a}_{n-1}}{{a}_{n-2}}$$•\frac{{a}_{n-2}}{{a}_{n-3}}$•…•$\frac{{a}_{3}}{{a}_{2}}$$•\frac{{a}_{2}}{{a}_{1}}$•a1=$\frac{n-1}{n+1}$$•\frac{n-2}{n}$•$\frac{n-3}{n-1}$•…•$\frac{2}{4}$×$\frac{1}{3}$×1
=$\frac{2}{n(n+1)}$,n=1時也成立.
∴an=$\frac{2}{n(n+1)}$.
點評 本題考查了數(shù)列遞推關系、“累乘求積”方法,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
組距 | (1,2] | (2,3] | (3,4] | (4,5] | (5,6] | (6,7] |
頻數(shù) | 1 | 1 | 2 | 3 | 1 | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10 | B. | 11 | C. | 12 | D. | 13 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,1) | B. | (-∞,0)∪(0,1) | C. | (-∞,0)∪(0,2) | D. | (-1,0)∪(0,1) |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com