14.過雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點F,作圓x2+y2=a2的切線FM與y軸交于點P(0,b),切圓于點M,則雙曲線的離心率e為$\frac{1+\sqrt{5}}{2}$.

分析 由題意可得F(c,0),P(0,b),求出直線PF的方程,由直線PF與圓x2+y2=a2相切的條件:d=r,運用點到直線的距離公式和a,b,c和離心率公式,計算即可得到所求值.

解答 解:由題意可得F(c,0),P(0,b),
直線PF的方程為$\frac{x}{c}$+$\frac{y}$=1,即bx+cy-bc=0,
由直線PF與圓x2+y2=a2相切,可得
d=r,即$\frac{bc}{\sqrt{^{2}+{c}^{2}}}$=a,
即有a2b2+a2c2=b2c2,
∴a2(c2-a2)+a2c2=(c2-a2)c2,
由e=$\frac{c}{a}$,整理,得e4-3e2+1=0,
解得e2=$\frac{3+\sqrt{5}}{2}$,或e2=$\frac{3-\sqrt{5}}{2}$(舍),
解得e=$\frac{1+\sqrt{5}}{2}$,或e=-$\frac{1+\sqrt{5}}{2}$(舍).
故答案為:$\frac{1+\sqrt{5}}{2}$.

點評 本題考查雙曲線的離心率的求法,注意運用直線和圓相切的條件:d=r,考查運算能力,是中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知△ABC中,tanA=$\frac{cosB-cosC}{sinC-sinB}$成立,則△ABC為( 。
A.等腰三角形B.A=60°的三角形
C.等腰三角形或A=60°的三角形D.不能確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.已知拋物線y2=2px(p>0)的焦點F與雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的右焦點重合,點M是拋物線與雙曲線的一個交點,若MF⊥x軸,則該雙曲線的離心率為$\sqrt{2}$+1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.某自來水廠的蓄水池存有400噸水,水廠每小時可向蓄水池中注入60噸,同時蓄水池又向居民小區(qū)不間斷供水,t小時內(nèi)供水總量為$120\sqrt{6t}$噸(0≤t≤24)
(1)設(shè)t小時后蓄水池中的存水量為y噸,寫出y關(guān)于t的函數(shù)表達式;
(2)求從供水開始到第幾小時,蓄水池中的存水量最少?最少水量是多少噸?
(3)若蓄水池中水量少于80噸時,就會出現(xiàn)供水緊張現(xiàn)象,請問:在一天的24小時內(nèi),有幾小時出現(xiàn)供水緊張現(xiàn)象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知M(x0,y0)是雙曲線C:x2-y2=1上的一點,F(xiàn)1,F(xiàn)2是C上的兩個焦點,若$\overrightarrow{M{F_1}}•\overrightarrow{M{F_2}}<0$,則x0的取值范圍是( 。
A.$(-\sqrt{2},\sqrt{2})$B.$(-\sqrt{3},\sqrt{3})$C.$(-\frac{{\sqrt{6}}}{3},\frac{{\sqrt{6}}}{3})$D.(-$\frac{\sqrt{6}}{2}$,-1]∪[1,$\frac{\sqrt{6}}{2}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對定義在區(qū)間D上的函數(shù)f(x)和g(x),如果對任意x∈D,都有|f(x)-g(x)|≤1成立,那么稱函數(shù)f(x)在區(qū)間D上可被g(x)替代,D稱為“替代區(qū)間”.給出以下命題:
①f(x)=x2+1在區(qū)間(-∞,+∞)上可被g(x)=x2+$\frac{1}{2}$替代;
②f(x)=x可被g(x)=1-$\frac{1}{4x}$替代的一個“替代區(qū)間”為[$\frac{1}{4}$,$\frac{3}{2}$]
③f(x)=lnx在區(qū)間[1,e]可被g(x)=$\frac{1}{x}$-b替代,則0≤b≤$\frac{1}{e}$
④f(x)=ln(ax2+x)(x∈D1),g(x)=sinx(x∈D2),則存在實數(shù)a(≠0),使得f(x)在區(qū)間D1∩D2上被g(x)替代.
其中真命題的有①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知點F是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左焦點,點E是該雙曲線的右頂點,過點F且垂直于x軸的直線與雙曲線交于A,B兩點,若$\overrightarrow{EA}$•$\overrightarrow{EB}$>0,則該雙曲線的離心率e的取值范圍是(1,2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知點F($\sqrt{5}$,0)是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的右焦點,且點F到雙曲線的漸近線的距離等于2,則過點F且與此雙曲線只有一個交點的直線方程為y=2x-2$\sqrt{5}$或y=-2x+2$\sqrt{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

4.若點F1,F(xiàn)2分別是雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)左右兩個焦點,過點F2垂直x軸的直線交雙曲線及雙曲線的漸近線依次為A1,B1,B2,A2(從上到下),且$\overrightarrow{{A}_{1}{A}_{2}}$=4$\overrightarrow{{B}_{1}{B}_{2}}$,則雙曲線的漸進線方程為y=±$\frac{\sqrt{15}}{15}$x.

查看答案和解析>>

同步練習(xí)冊答案