分析 根據(jù)拋物線的方程算出其焦點(diǎn)為F($\frac{p}{2}$,0),得到|MF|=p.設(shè)雙曲線的另一個(gè)焦點(diǎn)為F',由雙曲線的右焦點(diǎn)為F算出雙曲線的焦距|FF'|=p,△TFF'中利用勾股定理算出|MF'|=$\sqrt{2}$p,再由雙曲線的定義算出2a=($\sqrt{2}$-1)p,利用雙曲線的離心率公式加以計(jì)算,可得答案.
解答 解:拋物線y2=2px的焦點(diǎn)為F($\frac{p}{2}$,0),
由MF與x軸垂直,令x=$\frac{p}{2}$,可得|MF|=p,
雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$的實(shí)半軸為a,半焦距c,另一個(gè)焦點(diǎn)為F',
由拋物線y2=2px的焦點(diǎn)F與雙曲線的右焦點(diǎn)重合,
即c=$\frac{p}{2}$,可得雙曲線的焦距|FF'|=2c=p,
由于△MFF'為直角三角形,則|MF'|=$\sqrt{2}$p,
根據(jù)雙曲線的定義,得2a=|MF'|-|MF|=$\sqrt{2}$p-p,
可得a=$\frac{\sqrt{2}-1}{2}$p.
因此,該雙曲線的離心率e=$\frac{c}{a}$=$\sqrt{2}$+1.
故答案為:$\sqrt{2}$+1.
點(diǎn)評(píng) 本題給出共焦點(diǎn)的雙曲線與拋物線,在它們的交點(diǎn)在x軸上射影恰好為拋物線的焦點(diǎn)時(shí),求雙曲線的離心率.著重考查了拋物線和雙曲線的定義與標(biāo)準(zhǔn)方程、簡(jiǎn)單幾何性質(zhì)等知識(shí),屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 4 | C. | 2$\sqrt{2}$ | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com