已知函數(shù)f(x)=
ax
x2+b
(a,b∈R)在(-1,f(-1))處的切線方程為y=-2.
(Ⅰ)求函數(shù)f(x)的表達(dá)式;
(Ⅱ)當(dāng)m滿足什么條件時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增?
(Ⅰ)由題意得,f′(x)=
a(x2+b)-ax(2x)
(x2+b)2
,
∵函數(shù)f(x)=
ax
x2+b
在(-1,f(-1))處切線為y=-2,
f′(-1)=0
f(-1)=-2.
,即
a(1+b)-2a=0
a
1+b
=2.

解得
a=4
b=1.

f(x)=
4x
1+x2

(Ⅱ)由(Ⅰ)知f′(x)=
4(x2+1)-8x2
(x2+1)2
=
-4(x-1)(x+1)
(x2+1)2
,
由f′(x)≥0得,-1≤x≤1,即f(x)的單調(diào)增區(qū)間是[-1,1].
∵f(x)在區(qū)間(m,2m+1)上單調(diào)遞增,
m≥-1
2m+1≤1
m<2m+1.
,解得-1<m≤0.
∴當(dāng)m∈(-1,0]時,函數(shù)f(x)在區(qū)間(m,2m+1)上單調(diào)遞增.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
a-x2
x
+lnx  (a∈R , x∈[
1
2
 , 2])

(1)當(dāng)a∈[-2,
1
4
)
時,求f(x)的最大值;
(2)設(shè)g(x)=[f(x)-lnx]•x2,k是g(x)圖象上不同兩點(diǎn)的連線的斜率,否存在實(shí)數(shù)a,使得k≤1恒成立?若存在,求a的取值范圍;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2009•海淀區(qū)二模)已知函數(shù)f(x)=a-2x的圖象過原點(diǎn),則不等式f(x)>
34
的解集為
(-∞,-2)
(-∞,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a|x|的圖象經(jīng)過點(diǎn)(1,3),解不等式f(
2x
)>3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a•2x+b•3x,其中常數(shù)a,b滿足a•b≠0
(1)若a•b>0,判斷函數(shù)f(x)的單調(diào)性;
(2)若a=-3b,求f(x+1)>f(x)時的x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=a-2|x|+1(a≠0),定義函數(shù)F(x)=
f(x)   ,  x>0
-f(x) ,    x<0
 給出下列命題:①F(x)=|f(x)|; ②函數(shù)F(x)是奇函數(shù);③當(dāng)a<0時,若mn<0,m+n>0,總有F(m)+F(n)<0成立,其中所有正確命題的序號是
 

查看答案和解析>>

同步練習(xí)冊答案