【題目】若直線與曲線滿足下列兩個(gè)條件:直線在點(diǎn)處與曲線相切;曲線在點(diǎn)附近位于直線的兩側(cè),則稱直線在點(diǎn)切過(guò)曲線.則下列結(jié)論正確的是(

A.直線在點(diǎn)切過(guò)曲線

B.直線在點(diǎn)切過(guò)曲線

C.直線在點(diǎn)切過(guò)曲線

D.直線在點(diǎn)切過(guò)曲線

【答案】ACD

【解析】

根據(jù)“切過(guò)”的定義以及導(dǎo)數(shù)的幾何意義逐個(gè)選項(xiàng)判定即可.

A項(xiàng),因?yàn)?/span>,當(dāng)時(shí),,

所以是曲線在點(diǎn)處的切線.

當(dāng)時(shí),;當(dāng)時(shí),,

所以曲線在點(diǎn)附近位于直線的兩側(cè),結(jié)論正確;

B項(xiàng),,當(dāng)時(shí),,在處的切線為.

,則,

當(dāng)時(shí),;當(dāng)時(shí),,

所以.,

即當(dāng)時(shí),曲線全部位于直線的下側(cè)(除切點(diǎn)外),結(jié)論錯(cuò)誤;

C項(xiàng),,當(dāng)時(shí),,在處的切線為,

由正弦函數(shù)圖像可知,曲線在點(diǎn)附近位于直線的兩側(cè),結(jié)論正確;

D項(xiàng),,當(dāng)時(shí),,在處的切線為,

由正切函數(shù)圖像可知,曲線在點(diǎn)附近位于直線的兩側(cè),結(jié)論正確.

故選:ACD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買(mǎi)次維修,每次維修費(fèi)用300元,另外實(shí)際維修一次還需向維修人員支付上門(mén)服務(wù)費(fèi)80元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)買(mǎi)的次時(shí),則超出的維修次數(shù),每次只需支付維修費(fèi)用700元,無(wú)需支付上門(mén)服務(wù)費(fèi).需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買(mǎi)幾次維修,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得到下面統(tǒng)計(jì)表:

維修次數(shù)

6

7

8

9

10

頻數(shù)

10

20

30

30

10

表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器維修所需的總費(fèi)用(單位:元).

(1)若,求的函數(shù)解析式;

(2)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)8次維修,或每臺(tái)都購(gòu)買(mǎi)9次維修,分別計(jì)算這100臺(tái)機(jī)器在維修上所需總費(fèi)用的平均數(shù),并以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)8次還是9次維修?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,為了測(cè)量某濕地兩點(diǎn)間的距離,觀察者找到在同一直線上的三點(diǎn).從點(diǎn)測(cè)得,從點(diǎn)測(cè)得,,從點(diǎn)測(cè)得.若測(cè)得,(單位:百米),則兩點(diǎn)的距離為( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競(jìng)賽成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正數(shù)滿足,則的最大值為()

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在一場(chǎng)拋擲骰子的游戲中,游戲者最多有三次機(jī)會(huì)拋擲一顆骰子,游戲規(guī)則如下:拋擲1枚骰子,第1次拋擲骰子向上的點(diǎn)數(shù)為奇數(shù)則記為成功,第2次拋擲骰子向上的點(diǎn)數(shù)為3的倍數(shù)則記為成功,第3次拋擲骰子向上的點(diǎn)數(shù)為6則記為成功.游戲者在前兩次拋擲中至少成功一次才可以進(jìn)行第三次拋擲,其中拋擲骰子不成功得0分,第1次成功得3分,第2次成功得3分,第3次成功得4.

1)求游戲者有機(jī)會(huì)第3次拋擲骰子的概率;

2)設(shè)游戲者在一場(chǎng)拋擲骰子游戲中所得的分?jǐn)?shù)為,求隨機(jī)變量的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知集合.

1)求證:函數(shù)

2)某同學(xué)由(1)又發(fā)現(xiàn)是周期函數(shù)且是偶函數(shù),于是他得出兩個(gè)命題:①集合中的元素都是周期函數(shù);②集合中的元素都是偶函數(shù),請(qǐng)對(duì)這兩個(gè)命題給出判斷,如果正確,請(qǐng)證明;如果不正確,請(qǐng)舉出反例;

3)設(shè)為非零常數(shù),求的充要條件,并給出證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知正項(xiàng)數(shù)列的前項(xiàng)和為,且,,數(shù)列滿足,且

I)求數(shù)列,的通項(xiàng)公式;

II)令,求數(shù)列的前項(xiàng)和。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】過(guò)直線2x+y+4=0和圓x2+y2+2x4y+1=0的交點(diǎn),且面積最小的圓方程為(

A.(x+)2+(y+)2=B.(x)2+(y)2=

C.(x)2+(y+)2=D.(x+)2+(y)2=

查看答案和解析>>

同步練習(xí)冊(cè)答案