【題目】某公司計(jì)劃購(gòu)買(mǎi)1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買(mǎi)次維修,每次維修費(fèi)用300元,另外實(shí)際維修一次還需向維修人員支付上門(mén)服務(wù)費(fèi)80元.在機(jī)器使用期間,如果維修次數(shù)超過(guò)購(gòu)買(mǎi)的次時(shí),則超出的維修次數(shù),每次只需支付維修費(fèi)用700元,無(wú)需支付上門(mén)服務(wù)費(fèi).需決策在購(gòu)買(mǎi)機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買(mǎi)幾次維修,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得到下面統(tǒng)計(jì)表:
維修次數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
記表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器維修所需的總費(fèi)用(單位:元).
(1)若,求與的函數(shù)解析式;
(2)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買(mǎi)8次維修,或每臺(tái)都購(gòu)買(mǎi)9次維修,分別計(jì)算這100臺(tái)機(jī)器在維修上所需總費(fèi)用的平均數(shù),并以此作為決策依據(jù),購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)8次還是9次維修?
【答案】(1) ,.(2) ;;購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)8次維修服務(wù).
【解析】
(1)由題意結(jié)合題意將原問(wèn)題轉(zhuǎn)化為分段函數(shù)求解析式的問(wèn)題即可確定函數(shù)的解析式;
(2)由題意分別求得購(gòu)買(mǎi)8次維修服務(wù)和購(gòu)買(mǎi)9次維修服務(wù)所需費(fèi)用的平均數(shù),比較兩個(gè)平均數(shù)的大小即可給出決策.
(1)由題意得,當(dāng)時(shí),;
當(dāng)時(shí),,
即,.
(2)若每臺(tái)都購(gòu)買(mǎi)8次維修服務(wù),則有下表:
維修次數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費(fèi)用 | 2880 | 2960 | 3040 | 3740 | 4440 |
此時(shí),這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù)為
(元).
若每臺(tái)都購(gòu)買(mǎi)9次維修服務(wù),則有下表:
維修次數(shù) | 6 | 7 | 8 | 9 | 10 |
頻數(shù) | 10 | 20 | 30 | 30 | 10 |
費(fèi)用 | 3180 | 3260 | 3340 | 3420 | 4120 |
此時(shí),這100臺(tái)機(jī)器在維修上所需費(fèi)用的平均數(shù)為
(元).
因?yàn)?/span>,購(gòu)買(mǎi)1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買(mǎi)8次維修服務(wù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在梯形中,,,四邊形
為矩形,平面平面,.
(I)求證:平面;
(II)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成二面角的平面角為,
試求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四棱錐中,底面為菱形,,側(cè)棱底面,,點(diǎn)為的中點(diǎn),作,交于點(diǎn).
(1)求證:平面;
(2)求證:;
(3)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長(zhǎng)軸為直徑的圓相交于兩點(diǎn),若恰好將線段三等分,則
A.B.C.D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了研究高中學(xué)生對(duì)鄉(xiāng)村音樂(lè)的態(tài)度(喜歡和不喜歡兩種態(tài)度)與性別的關(guān)系,運(yùn)用2×2列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),經(jīng)計(jì)算K2=8.01,附表如下:
P(K2≥k0) | 0.100 | 0.050 | 0.025 | 0.010 | 0.001 |
k0 | 2.706 | 3.841 | 5.024 | 6.635 | 10.828 |
參照附表,得到的正確的結(jié)論是( 。
A. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”
B. 有99%以上的把握認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”
C. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別有關(guān)”
D. 在犯錯(cuò)誤的概率不超過(guò)0.1%的前提下,認(rèn)為“喜歡鄉(xiāng)村音樂(lè)與性別無(wú)關(guān)”
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某書(shū)店銷(xiāo)售剛剛上市的某高二數(shù)學(xué)單元測(cè)試卷,按事先擬定的價(jià)格進(jìn)行5天試銷(xiāo),每種單價(jià)試銷(xiāo)1天,得到如下數(shù)據(jù):
單價(jià)x/元 | 18 | 19 | 20 | 21 | 22 |
銷(xiāo)量y/冊(cè) | 61 | 56 | 50 | 48 | 45 |
(1)求試銷(xiāo)天的銷(xiāo)量的方差和關(guān)于的回歸直線方程;
附: .
(2)預(yù)計(jì)以后的銷(xiāo)售中,銷(xiāo)量與單價(jià)服從上題中的回歸直線方程,已知每?jī)?cè)單元測(cè)試卷的成本是10元,為了獲得最大利潤(rùn),該單元測(cè)試卷的單價(jià)應(yīng)定為多少元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)若函數(shù)在時(shí)取得極值,求實(shí)數(shù)的值;
(2)若對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖四棱錐中,底面,是邊長(zhǎng)為2的等邊三角形,且,,點(diǎn)是棱上的動(dòng)點(diǎn).
(I)求證:平面平面;
(Ⅱ)當(dāng)線段最小時(shí),求直線與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】若直線與曲線滿足下列兩個(gè)條件:①直線在點(diǎn)處與曲線相切;②曲線在點(diǎn)附近位于直線的兩側(cè),則稱(chēng)直線在點(diǎn)處“切過(guò)”曲線.則下列結(jié)論正確的是( )
A.直線在點(diǎn)處“切過(guò)”曲線
B.直線在點(diǎn)處“切過(guò)”曲線
C.直線在點(diǎn)處“切過(guò)”曲線
D.直線在點(diǎn)處“切過(guò)”曲線
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com