已知下列四個(gè)命題:
①命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”的逆否命題為真命題;
②若p或q為真命題,則p、q均為真命題;
③若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1≥0;
④“”是“”的充分不必要條件.
其中正確的是( )
A.①④
B.②③
C.①③
D.②④
【答案】分析:根據(jù)函數(shù)單調(diào)性的定義及不等式的性質(zhì),可以判斷①的真假;根據(jù)復(fù)合命題真假判斷的真值表,可以判斷②的真假;根據(jù)存在性命題的否定方法,可以判斷③的真假;根據(jù)充要條件的判定方法,可以判斷④的真假,進(jìn)而得到答案.
解答:解:若f(x)是R上的減函數(shù),且a+b≥0,則a≥-b,且b≥-a,則f(a)≤f(-b),且f(b)≤f(-a),則f(a)+f(b)≤f(-a)+f(-b)
∴命題“已知f(x)是R上的減函數(shù),若a+b≥0,則f(a)+f(b)≤f(-a)+f(-b)”為真假命題,再由互為逆否的兩個(gè)命題真假性一致,故①正確;
②若p或q為真命題,則p與q中至少有一個(gè)為真命題,但一定全為真命題,故②錯(cuò)誤;
若命題p:?x∈R,x2-x+1<0,則¬p:?x∈R,x2-x+1≥0,故③正確;
∵“”⇒“”為假,“”⇒“”為真,故“”是“”的必要不充分條件,故④錯(cuò)誤;
故選C.
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是命題的真假判斷與應(yīng)用,其中根據(jù)函數(shù)單調(diào)性的定義,復(fù)合命題的真假表,全(特)稱命題的否定,充要條件的定義等基本知識(shí)點(diǎn)判斷題目中各個(gè)命題的真假是解答本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

7、已知下列四個(gè)命題:①“若xy=0,則x=0且y=0”的逆否命題;
②“正方形是菱形”的否命題;
③“若ac2>bc2,則a>b”的逆命題;
④若“m>2,則不等式x2-2x+m>0的解集為R”.
其中真命題的個(gè)數(shù)為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①若函數(shù)y=f(x)在x°處的導(dǎo)數(shù)f'(x°)=0,則它在x=x°處有極值;
②不論m為何值,直線y=mx+1均與曲線
x2
4
+
y2
b2
=1
有公共點(diǎn),則b≥1;
③設(shè)直線l1、l2的傾斜角分別為α、β,且1+tanβ-tanα+tanαtanβ=0,則l1和l2的夾角為45°;
④若命題“存在x∈R,使得|x-a|+|x+1|≤2”是假命題,則|a+1|>2;
以上四個(gè)命題正確的是
 
(填入相應(yīng)序號(hào)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①函數(shù)f(x)=2x滿足:對(duì)任意x1,x2∈R,有f(
x1+x2
2
)<
1
2
[f(x1)+f(x2)];
②函數(shù)f(x)=log2(x+
1+x2
)
,g(x)=1+
2
2x-1
均是奇函數(shù);
③若函數(shù)f(x)的圖象關(guān)于點(diǎn)(1,0)成中心對(duì)稱圖形,且滿足f(4-x)=f(x),那么f(2)=f(2012);
④設(shè)x1,x2是關(guān)于x的方程|logax|=k(a>0,a≠1)的兩根,則x1x2=1.
其中正確命題的序號(hào)是
①②④
①②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
(1)已知扇形的面積為24π,弧長為8π,則該扇形的圓心角為
3
;
(2)若θ是第二象限角,則
cos
θ
2
sin
θ
2
<0;
(3)在平面直角坐標(biāo)系中,角α的終邊在直線3x+4y=0上,則tanα=-
3
4
;
(4)滿足sinθ>
1
2
的角θ取值范圍是(
π
6
+2kπ,
6
+2kπ),(k∈Z)
其中正確命題的序號(hào)為
(1),(3),(4).
(1),(3),(4).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知下列四個(gè)命題:
①若tanθ=2,則sin2θ=
4
5

②函數(shù)f(x)=lg(x+
1+x2
)
是奇函數(shù);
③“a>b”是“2a>2b”的充分不必要條件;
④在△ABC中,若sinAcosB=sinC,則△ABC中是直角三角形.
其中所有真命題的序號(hào)是
①②④
①②④

查看答案和解析>>

同步練習(xí)冊(cè)答案