【題目】已知點A(-2,0),B(2,0),曲線C上的動點P滿足.
(1)求曲線C的方程;
(2)若過定點M(0,-2)的直線l與曲線C有公共點,求直線l的斜率k的取值范圍;
(3)若動點Q(x,y)在曲線C上,求的取值范圍.
【答案】(1);(2);(3)
【解析】試題分析:(1)設點,利用直接法求動點軌跡;(2)設直線方程,利用圓心到直線的距離和半徑的大小進行求解;(3)將求斜率問題轉化為判定直線和圓有公共點問題,再利用圓心到直線的距離和半徑的大小進行求解.
試題解析:(1)設P(x,y),A·B=(x+2,y)(x-2,y)=x2-4+y2=-3,
得P點軌跡(曲線C)方程為x2+y2=1,
即曲線C是圓.
(2)可設直線l的方程為y=kx-2,
其一般方程為kx-y-2=0,
由直線l與曲線C有交點,得≤1,得k≤-或k≥,
即所求k的取值范圍是(-∞,- ]∪[,+∞).
(3)由動點Q(x,y),設定點N(1,-2),
則直線QN的斜率kQN==u,
又點Q在曲線C上,故直線QN與圓有交點,
設直線QN的方程為y+2=u(x-1),
即ux-y-u-2=0.
當直線與圓相切時,=1,
解得u=-,
當u不存在時,直線與圓相切,
所以u∈(-∞,-].
科目:高中數(shù)學 來源: 題型:
【題目】已知定義在上的函數(shù),其導函數(shù)的大致圖像如圖所示,則下列敘述正確的是().
(1)
(2)函數(shù)在上遞增,在上遞減
(3)的極值點為c,e
(4)的極大值為
A. (1)(2) B. (2)(3) C. (3) D. (1)(4)
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】給出下列命題,其中正確的命題的個數(shù)( )
①函數(shù)圖象恒在軸的下方;
②將的圖像經(jīng)過先關于軸對稱,再向右平移1個單位的變化后為的圖像;
③若函數(shù)的值域為,則實數(shù)的取值范圍是;
④函數(shù)的圖像關于對稱的函數(shù)解析式為
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知正方體ABCD-A1B1C1D1的棱長為2,E為棱CC1的中點,點M在正方形BCC1B1內(nèi)運動,且直線AM//平面A1DE,則動點M 的軌跡長度為( )
A. B. π C. 2 D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)的圖象過點,且不等式的解集為.
(1)求的解析式;
(2)若在區(qū)間上有最小值,求實數(shù)的值;
(3)設,若當時,函數(shù)的圖象恒在圖象的上方,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù),函數(shù).
⑴若的定義域為,求實數(shù)的取值范圍;
⑵當,求函數(shù)的最小值;
⑶是否存在實數(shù),使得函數(shù)的定義域為,值域為?若存在,求出的值;若不存在,則說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】隨著資本市場的強勢進入,互聯(lián)網(wǎng)共享單車“忽如一夜春風來”,遍布了一二線城市的大街小巷.為了解共享單車在市的使用情況,某調(diào)查機構借助網(wǎng)絡進行了問卷調(diào)查,并從參與調(diào)查的網(wǎng)友中隨機抽取了200人進行抽樣分析,得到下表(單位:人):
經(jīng)常使用 | 偶爾或不用 | 合計 | |
30歲及以下 | 70 | 30 | 100 |
30歲以上 | 60 | 40 | 100 |
合計 | 130 | 70 | 200 |
(1)根據(jù)以上數(shù)據(jù),能否在犯錯誤的概率不超過0.15的前提下認為市使用共享單車情況與年齡有關?
(2)現(xiàn)從所有抽取的30歲以上的網(wǎng)民中利用分層抽樣抽取5人,
求這5人中經(jīng)常使用、偶爾或不用共享單車的人數(shù);
從這5人中,在隨機選出2人贈送一件禮品,求選出的2人中至少有1人經(jīng)常使用共享單車的概率.
參考公式: ,其中.
() | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)若對任意的實數(shù)都有成立,求實數(shù)的值;
(2)若在區(qū)間上為單調(diào)增函數(shù),求實數(shù)的取值范圍;
(3)當時,求函數(shù)的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com