2.已知i為虛數(shù)單位,則復(fù)數(shù)i(1-i)=1+i.

分析 利用復(fù)數(shù)的運(yùn)算法則即可得出.

解答 解:復(fù)數(shù)i(1-i)=i+1,
故答案為:1+i.

點(diǎn)評 本題考查了復(fù)數(shù)的運(yùn)算法則,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.復(fù)數(shù)$\frac{2}{1+i}$=( 。
A.2-iB.2-2iC.1+iD.1-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=ln x.
(1)判斷函數(shù)$g(x)=af(x)-\frac{1}{x}$的單調(diào)性;
(2)若對任意的x>0,不等式f(x)≤ax≤ex恒成立,求實(shí)數(shù)a的取值范圍;
(3)若x1>x2>0,求證:$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}>\frac{{2{x_2}}}{{{x_1}^2+{x_2}^2}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.A、B兩個班共有65名學(xué)生,為調(diào)查他們的引體向上鍛煉情況,通過分層抽樣獲得了部分學(xué)生引體向上的測試數(shù)據(jù)(單位:個),用莖葉圖記錄如下:
(I) 試估計B班的學(xué)生人數(shù);
(II) 從A班和B班抽出的學(xué)生中,各隨機(jī)選取一人,A班選出的人記為甲,B班選出的人記為乙,假設(shè)所有學(xué)生的測試相對獨(dú)立,比較甲、乙兩人的測試數(shù)據(jù)得到隨機(jī)變量ξ.規(guī)定:
當(dāng)甲的測試數(shù)據(jù)比乙的測試數(shù)據(jù)低時,記ξ=-1,
當(dāng)甲的測試數(shù)據(jù)與乙的測試數(shù)據(jù)相等時,記ξ=0,
當(dāng)甲的測試數(shù)據(jù)比乙的測試數(shù)據(jù)高時,記ξ=1.
求隨機(jī)變量ξ的分布列及期望.
(III) 再從A、B兩個班中各隨機(jī)抽取一名學(xué)生,他們引體向上的測試數(shù)據(jù)分別是10,8(單位:個),這2個新數(shù)據(jù)與表格中的數(shù)據(jù)構(gòu)成的新樣本的平均數(shù)記μ1,表格中數(shù)據(jù)的平均數(shù)記為μ0,試判斷μ0和μ1的大小(結(jié)論不要求證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.下列四個函數(shù)中,在其定義域上既是奇函數(shù)又是單調(diào)遞增函數(shù)的是( 。
A.y=exB.y=log2xC.y=sinxD.y=x3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.若函數(shù)$f(x)=\left\{\begin{array}{l}{2^{-x}},-1≤x<1\\ lnx,1≤x≤a.\end{array}\right.$
①當(dāng)a=2時,若f(x)=1,則x=0;
②若f(x)的值域?yàn)閇0,2],則a的取值范圍是[$\sqrt{e}$,e2].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足$\overrightarrow{a}-2\overrightarrow$=0,($\overrightarrow{a}-\overrightarrow$)•$\overrightarrow$=2,則|$\overrightarrow$|=( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知集合A={-2,0},B={-2,3},則A∪B={-2,0,3}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,AD∥BC,∠BAD=90°,PA=PD,AB⊥PA,AD=2,AB=BC=1
(Ⅰ)求證:AB⊥PD
(Ⅱ)若E為PD的中點(diǎn),求證:CE∥平面PAB
(Ⅲ)設(shè)平面PAB∩平面PCD=PM,點(diǎn)M在平面ABCD上.當(dāng)PA⊥PD時,求PM的長.

查看答案和解析>>

同步練習(xí)冊答案