⒗ 已知函數(shù),其中為實數(shù),且在處取得的極值為。
⑴求的表達(dá)式;
⑵若在處的切線方程。
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年貴州省五校聯(lián)盟高三第四次聯(lián)考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
已知函數(shù),其中為實數(shù).
(Ⅰ)當(dāng)時,求曲線在點(diǎn)處的切線方程;
(Ⅱ)是否存在實數(shù),使得對任意,恒成立?若不存在,請說明理由,若存在,求出的值并加以證明.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2012年全國普通高等學(xué)校招生統(tǒng)一考試?yán)砜茢?shù)學(xué)(湖北卷解析版) 題型:解答題
本小題滿分14分)
(Ⅰ)已知函數(shù),其中為有理數(shù),且. 求的最小值;
(Ⅱ)試用(Ⅰ)的結(jié)果證明如下命題:設(shè),為正有理數(shù). 若,則;
(Ⅲ)請將(Ⅱ)中的命題推廣到一般形式,并用數(shù)學(xué)歸納法證明你所推廣的命題.
注:當(dāng)為正有理數(shù)時,有求導(dǎo)公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2014屆山東省高一上學(xué)期期中數(shù)學(xué)試卷 題型:解答題
已知函數(shù)(其中為常量且)的圖像經(jīng)過點(diǎn).
(Ⅰ)試求的值;
(Ⅱ)若不等式在時恒成立,求實數(shù)的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:河北省2010年高三一模模擬(三)數(shù)學(xué)理 題型:解答題
(本小題滿分10分)已知函數(shù)(其中為正常數(shù),)的最小正周期為.
(1)求的值;
(2)在△中,若,且,求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2010-2011年浙江省高二下學(xué)期第一次質(zhì)量檢測數(shù)學(xué)理卷 題型:解答題
已知函數(shù),其中為參數(shù),且,
(Ⅰ)當(dāng)時,判斷函數(shù)是否有極值?
(Ⅱ)要使函數(shù)的極小值大于零,求參數(shù)的取值范圍;
(Ⅲ)若對(Ⅱ)中所求的取值范圍內(nèi)的任意參數(shù),函數(shù)在區(qū)間內(nèi)都是增函數(shù),求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com