數(shù)列的首項(xiàng)為, 為等差數(shù)列且 .若則,則

(A)0     (B)3       (C)8          (D)11

 

【答案】

 解析:由已知知由疊加法

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

從數(shù)列{an}中取出部分項(xiàng),并將它們按原來的順序組成一個(gè)數(shù)列,稱之為數(shù)列{an}的一個(gè)子數(shù)列.設(shè)數(shù)列{an}是一個(gè)首項(xiàng)為a1、公差為d(d≠0)的無窮等差數(shù)列.
(1)若a1,a2,a5成等比數(shù)列,求其公比q.
(2)若a1=7d,從數(shù)列{an}中取出第2項(xiàng)、第6項(xiàng)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問該數(shù)列是否為{an}的無窮等比子數(shù)列,請(qǐng)說明理由.
(3)若a1=1,從數(shù)列{an}中取出第1項(xiàng)、第m(m≥2)項(xiàng)(設(shè)am=t)作為一個(gè)等比數(shù)列的第1項(xiàng)、第2項(xiàng),試問當(dāng)且僅當(dāng)t為何值時(shí),該數(shù)列為{an}的無窮等比子數(shù)列,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列敘述正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中,首項(xiàng)a1=1,公差d為整數(shù),且滿足a1+3<a3,a2+5>a4,數(shù)列{bn}滿足bn=
1anan+1
,其前n項(xiàng)和為Sn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若S2為S1,Sm (m∈N*)的等比中項(xiàng),求正整數(shù)m的值.
(3)對(duì)任意正整數(shù)k,將等差數(shù)列{an}中落入?yún)^(qū)間(2k,22k)內(nèi)項(xiàng)的個(gè)數(shù)記為ck,求數(shù)列{cn}的前n項(xiàng)
和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)Sn為等差數(shù)列{an}的前n項(xiàng)和.(nN*).

(Ⅰ)若數(shù)列{an}單調(diào)遞增,且a2a1、a5的等比中項(xiàng),證明:

(Ⅱ)設(shè){an}的首項(xiàng)為a1,公差為d,且,問是否存在正常數(shù)c,使對(duì)任意自然數(shù)n都成立,若存在,求出c(用d表示);若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年江蘇省無錫市高三上學(xué)期期中考試數(shù)學(xué)(解析版) 題型:解答題

.(本題滿分16分)

已知等差數(shù)列的首項(xiàng)為,公差為b,等比數(shù)列的首項(xiàng)為b,公比為a(其中a,b均為正整數(shù))。

(I)若,求數(shù)列的通項(xiàng)公式;

(II)對(duì)于(1)中的數(shù)列,對(duì)任意之間插入個(gè)2,得到一個(gè)新的數(shù)列,試求滿足等式的所有正整數(shù)m的值;

(III)已知,若存在正整數(shù)m,n以及至少三個(gè)不同的b值使得等成立,求t的最小值,并求t最小時(shí)a,b的值。

 

查看答案和解析>>

同步練習(xí)冊(cè)答案