13.已知sinα=$\frac{1}{6}$,則sin2α-cos2α的值為(  )
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{17}$D.-$\frac{18}{17}$

分析 根據(jù)同角的三角函數(shù)平方關(guān)系,即可求出sin2α-cos2α的值.

解答 解:∵sinα=$\frac{1}{6}$,
∴sin2α-cos2α=sin2α-(1-sin2α)
=2sin2α-1
=2×${(\frac{1}{6})}^{2}$-1
=-$\frac{17}{18}$.
故選:B.

點(diǎn)評(píng) 本題考查了同角的三角函數(shù)平方關(guān)系的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知數(shù)列{an},an≥0,a1=0,an+12+an+1-1=an2(n∈N).記Sn=a1+a2+…+an.Tn=$\frac{1}{{1+{a_1}}}$+$\frac{1}{{(1+{a_1})(1+{a_2})}}$+…+$\frac{1}{{(1+{a_1})(1+{a_2})…(1+{a_n})}}$.求證:當(dāng)n∈N*時(shí)
(Ⅰ)0≤an<an+1<1;
(Ⅱ)Sn>n-2;
(Ⅲ)Tn<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知F1,F(xiàn)2分別是雙曲線3x2-5y2=75的左焦點(diǎn)和右焦點(diǎn),P是雙曲線上的一點(diǎn),且∠F1PF2=60°,求三角形F1PF2的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖所示,有塊正方形的鋼板ABCD,其中一個(gè)角有部分損壞,現(xiàn)要把它截成一塊正方形的鋼板EFGH.在直角三角形GFC中,∠GFC=θ.若截后的正方形鋼板EFGH的面積是原正方形ABCD的面積的三分之二,求θ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.給出以下四個(gè)命題,其中正確的命題的個(gè)數(shù)為( 。
①330°角與-1050°角的終邊相同
②第二象限角都是鈍角
③終邊在y軸正半軸上的角不一定是直角
④銳角用集合表示為{x|0°≤x<$\frac{π}{2}$}.
A.0B.1C.2D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:解答題

根據(jù)統(tǒng)計(jì)資料,某工藝品廠的日產(chǎn)量最多不超過20件根據(jù)統(tǒng)計(jì)資料,每日產(chǎn)品廢品率與日產(chǎn)量 (件)之間近似地滿足關(guān)系式(日產(chǎn)品廢品率=×100%) .

已知每生產(chǎn)一件正品可贏利2千元,而生產(chǎn)一件廢品則虧損1千元.(該車間的日利潤(rùn)日正品贏利額日廢品虧損額)

(1)將該車間日利潤(rùn)(千元)表示為日產(chǎn)量(件)的函數(shù);

(2)當(dāng)該車間的日產(chǎn)量為多少件時(shí),日利潤(rùn)最大?最大日利潤(rùn)是幾千元?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2015-2016學(xué)年江蘇泰興中學(xué)高二上學(xué)期期末數(shù)學(xué)(理)試卷(解析版) 題型:填空題

設(shè)函數(shù)的導(dǎo)數(shù)為,且,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在等差數(shù)列{an}中,a1+a5=8,a4=7,則a5=(  )
A.11B.10C.7D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.下列函數(shù)中,最小正周期為4π的是(  )
A.y=sin$\frac{x}{2}$B.y=tan2xC.y=sin2xD.y=cos4x

查看答案和解析>>

同步練習(xí)冊(cè)答案