如圖,在平面直角坐標(biāo)系xOy中,已知曲線C由圓弧C1和圓弧C2相接而成,兩相接點(diǎn)M,N均在直線x=5上.圓弧C1的圓心是坐標(biāo)原點(diǎn)O,半徑為13;圓弧C2過點(diǎn)A(29,0).
(1)求圓弧C2的方程.
(2)曲線C上是否存在點(diǎn)P,滿足PA=PO?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說明理由.
(3)已知直線l:x-my-14=0與曲線C交于E,F(xiàn)兩點(diǎn),當(dāng)EF=33時(shí),求坐標(biāo)原點(diǎn)O到直線l的距離.
(1)圓弧C1所在圓的方程為x2+y2=169,令x=5,解得M(5,12),N(5,-12).
則線段AM中垂線的方程為y-6=2(x-17),令y=0,得圓弧C2所在圓的圓心為O2(14,0),
又圓弧C2所在圓的半徑為r2=29-14=15,所以圓弧C2的方程為(x-14)2+y2=225(5≤x≤29).
(2)假設(shè)存在這樣的點(diǎn)P(x,y),則由PA=PO,得x2+y2+2x-29=0,
由,解得x=-70(舍去)
由,解得x=0(舍去),
綜上知,這樣的點(diǎn)P不存在.
(3)因?yàn)镋F>2r2,EF>2r1,所以E,F(xiàn)兩點(diǎn)分別在兩個(gè)圓弧上.設(shè)點(diǎn)O到直線l的距離為d,因?yàn)橹本l恒過圓弧C2所在圓的圓心(14,0),所以EF=15++,即+=18,解得d2=,所以點(diǎn)O到直線l的距離為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
OP |
OA |
OB |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
A、偶函數(shù) | B、奇函數(shù) | C、不是奇函數(shù),也不是偶函數(shù) | D、奇偶性與k有關(guān) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
1 |
6 |
1 |
6 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
試問:是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com