【題目】已知函數(shù)f(x)=excosx﹣x.(13分)
(1)求曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程;
(2)求函數(shù)f(x)在區(qū)間[0, ]上的最大值和最小值.
【答案】
(1)
解:函數(shù)f(x)=excosx﹣x的導(dǎo)數(shù)為f′(x)=ex(cosx﹣sinx)﹣1,
可得曲線y=f(x)在點(diǎn)(0,f(0))處的切線斜率為k=e0(cos0﹣sin0)﹣1=0,
切點(diǎn)為(0,e0cos0﹣0),即為(0,1),
曲線y=f(x)在點(diǎn)(0,f(0))處的切線方程為y=1;
(2)
解:函數(shù)f(x)=excosx﹣x的導(dǎo)數(shù)為f′(x)=ex(cosx﹣sinx)﹣1,
令g(x)=ex(cosx﹣sinx)﹣1,
則g(x)的導(dǎo)數(shù)為g′(x)=ex(cosx﹣sinx﹣sinx﹣cosx)=﹣2exsinx,
當(dāng)x∈[0, ],可得g′(x)=﹣2exsinx≤0,
即有g(shù)(x)在[0, ]遞減,可得g(x)≤g(0)=0,
則f(x)在[0, ]遞減,
即有函數(shù)f(x)在區(qū)間[0, ]上的最大值為f(0)=e0cos0﹣0=1;
最小值為f( )=e cos ﹣ =﹣ .
【解析】(1.)求出f(x)的導(dǎo)數(shù),可得切線的斜率和切點(diǎn),由點(diǎn)斜式方程即可得到所求方程;
(2.)求出f(x)的導(dǎo)數(shù),再令g(x)=f′(x),求出g(x)的導(dǎo)數(shù),可得g(x)在區(qū)間[0, ]的單調(diào)性,即可得到f(x)的單調(diào)性,進(jìn)而得到f(x)的最值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,已知橢圓C:的離心率,F(xiàn)1,F(xiàn)2分別為左、右焦點(diǎn),過(guò)F1的直線交橢圓C于P,Q兩點(diǎn),且的周長(zhǎng)為8.
(1)求橢圓c的方程;
(2)設(shè)過(guò)點(diǎn)M(3,0)的直線交橢圓C于不同兩點(diǎn)A,B,N為橢圓上一點(diǎn),且滿足(O為坐標(biāo)原點(diǎn)),當(dāng)時(shí),求實(shí)數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知正四棱臺(tái)ABCD-A1B1C1D1中,上底面A1B1C1D1邊長(zhǎng)為1,下底面ABCD邊長(zhǎng)為2,側(cè)棱與底面所成的角為60°,則異面直線AD1與B1C所成角的余弦值為__________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直三棱柱ABC-A1B1C1中,底面是以∠ABC為直角的等腰三角形,AC=2a,BB1=3a,D是A1C1的中點(diǎn),點(diǎn)E在棱AA1上,要使CE⊥平面B1DE,則AE=_____.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某大學(xué)藝術(shù)專(zhuān)業(yè)400名學(xué)生參加某次測(cè)評(píng),根據(jù)男女學(xué)生人數(shù)比例,使用分層抽樣的方法從中隨機(jī)抽取了100名學(xué)生,記錄他們的分?jǐn)?shù),將數(shù)據(jù)分成7組:[20,30),[30,40),…[80,90],并整理得到如下頻率分布直方圖:
(Ⅰ)從總體的400名學(xué)生中隨機(jī)抽取一人,估計(jì)其分?jǐn)?shù)小于70的概率;
(Ⅱ)已知樣本中分?jǐn)?shù)小于40的學(xué)生有5人,試估計(jì)總體中分?jǐn)?shù)在區(qū)間[40,50)內(nèi)的人數(shù);
(Ⅲ)已知樣本中有一半男生的分?jǐn)?shù)不小于70,且樣本中分?jǐn)?shù)不小于70的男女生人數(shù)相等.試估計(jì)總體中男生和女生人數(shù)的比例.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某公司計(jì)劃2011年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過(guò)300分鐘的廣告,廣告費(fèi)用不超過(guò)9萬(wàn)元.甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為500元/分鐘和200元/分鐘.假定甲、乙兩個(gè)電視臺(tái)為該公司每分鐘所做的廣告,能給公司帶來(lái)的收益分別為0.3 萬(wàn)元和0.2萬(wàn)元.問(wèn):該公司如何分配在甲、乙兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司收益最大,最大收益是多少萬(wàn)元?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知正四面體D﹣ABC(所有棱長(zhǎng)均相等的三棱錐),P、Q、R分別為AB、BC、CA上的點(diǎn),AP=PB, = =2,分別記二面角D﹣PR﹣Q,D﹣PQ﹣R,D﹣QR﹣P的平面角為α、β、γ,則( )
A.γ<α<β
B.α<γ<β
C.α<β<γ
D.β<γ<α
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知數(shù)列{xn}滿足:x1=1,xn=xn+1+ln(1+xn+1)(n∈N*),證明:當(dāng)n∈N*時(shí),
(Ⅰ)0<xn+1<xn;
(Ⅱ)2xn+1﹣xn≤ ;
(Ⅲ) ≤xn≤ .
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知一個(gè)口袋有m個(gè)白球,n個(gè)黑球(m,n∈N* , n≥2),這些球除顏色外全部相同.現(xiàn)將口袋中的球隨機(jī)的逐個(gè)取出,并放入如圖所示的編號(hào)為1,2,3,…,m+n的抽屜內(nèi),其中第k次取出的球放入編號(hào)為k的抽屜(k=1,2,3,…,m+n).
1 | 2 | 3 | … | m+n |
(Ⅰ)試求編號(hào)為2的抽屜內(nèi)放的是黑球的概率p;
(Ⅱ)隨機(jī)變量x表示最后一個(gè)取出的黑球所在抽屜編號(hào)的倒數(shù),E(X)是X的數(shù)學(xué)期望,證明E(X)< .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com