精英家教網 > 高中數學 > 題目詳情

【題目】一個袋子中有4個紅球,2個白球,若從中任取2個球,則這2個球中有白球的概率是  

A. B. C. D.

【答案】B

【解析】

先計算從中任取2個球的基本事件總數,然后計算這2個球中有白球包含的基本事件個數,由此能求出這2個球中有白球的概率.

解:一個袋子中有4個紅球,2個白球,4紅球編號為1,2,3,4;2個白球編號為5,6從中任取2個球,基本事件為:{12},{1,3},{1,4},{1,5}{1,6},{2,3}{2,4}{2,5},{26}{3,4},{35},{36},{45},{46},{5,6},共15個,而且這些基本事件的出現是等可能的.用A表示“兩個球中有白球”這一事件,則A包含的基本事件有:{1,5}{1,6}{2,5}{2,6},{3,5},{3,6},{4,5}{4,6}{5,6}9個,這2個球中有白球的概率是

故選:B

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】如圖,已知圓,點是圓內一個定點,是圓上任意-一點,線段的垂直平分線和半徑相交于點,連接,記動點的軌跡為曲線.

(1)求曲線的方程;

(2)、是曲線上關于原點對稱的兩個點,點是曲線.上任意-一點(不同于點、),當直線、的斜率都存在時,記它們的斜率分別為、,求證:的為定值.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,已知拋物線C頂點在坐標原點,焦點F在Y軸的非負半軸上,點是拋物線上的一點.

(1)求拋物線C的標準方程

(2)若點P,Q在拋物線C上,且拋物線C在點P,Q處的切線交于點S,記直線 MP,MQ的斜率分別為k1,k2,且滿足,當P,Q在C上運動時,△PQS的面積是否為定值?若是,求出△PQS的面積;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】質檢部門從某超市銷售的甲、乙兩種食用油中分別隨機抽取100桶檢測某項質量指標,由檢測結果得到如圖的頻率分布直方圖:

(I)寫出頻率分布直方圖(甲)中的值;記甲、乙兩種食用油100桶樣本的質量指標的方差分別為,試比較的大。ㄖ灰髮懗龃鸢福;

(Ⅱ)佑計在甲、乙兩種食用油中各隨機抽取1桶,恰有一個桶的質量指標大于20,且另—個桶的質量指標不大于20的概率;

(Ⅲ)由頻率分布直方圖可以認為,乙種食用油的質量指標值服從正態(tài)分布.其中近似為樣本平均數,近似為樣本方差,設表示從乙種食用油中隨機抽取10桶,其質量指標值位于(14.55, 38.45)的桶數,求的數學期望.

注:①同一組數據用該區(qū)間的中點值作代表,計算得

②若,則,.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】在三棱錐中,BO、AO、CO所在直線兩兩垂直,且AO=CO,∠BAO=60°,EAC的中點,三棱錐的體積為

(1)求三棱錐的高;

(2)在線段AB上取一點D,當D在什么位置時,的夾角大小為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】7本不同的書:

1)全部分給6個人,每人至少一本,有多少種不同的分法?

2)全部分給5個人,每人至少一本,有多少種不同的分法?.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)=,下列結論中錯誤的是

A. , f()=0

B. 函數y=f(x)的圖像是中心對稱圖形

C. f(x)的極小值點,則f(x)在區(qū)間(-∞,)單調遞減

D. fx)的極值點,則()=0

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知點在拋物線上,則當點到點的距離與點到拋物線焦點距離之和取得最小值時,點的坐標為( )

A. B. C. D.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】為預防病毒爆發(fā),某生物技術公司研制出一種新流感疫苗,為測試該疫苗的有效性(若疫苗有效的概率小于%,則認為測試沒有通過),公司選定個流感樣本分成三組,測試結果如下表:

疫苗有效

疫苗無效

已知在全體樣本中隨機抽取個,抽到組疫苗有效的概率是

(Ⅰ)求的值;

(Ⅱ)現用分層抽樣的方法在全體樣本中抽取個測試結果,問應在組抽取多少個?

(Ⅲ)已知,,求不能通過測試的概率.

查看答案和解析>>

同步練習冊答案