已知橢圓C:的離心率為,長軸長為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線交橢圓C于A、B兩點(diǎn),試問:在y軸正半軸上是否存在一個定點(diǎn)M滿足,若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
(I).(II)存在點(diǎn)滿足.

試題分析:(I)利用橢圓的幾何性質(zhì)得.
(II)通過研究時,可知滿足條件,若所求的定點(diǎn)M存在,則一定是P點(diǎn).
證明就是滿足條件的定點(diǎn).
將直線方程與橢圓方程聯(lián)立并整理,應(yīng)用韋達(dá)定理,將用坐標(biāo)表示,根據(jù)
得到使的點(diǎn).
試題解析:(I)由題意得,              2分
解得                3分
橢圓的方程為.                4分
(II)當(dāng)時,直線與橢圓交于兩點(diǎn)的坐標(biāo)分別為,
設(shè)y軸上一點(diǎn),滿足, 即,
解得(舍),
則可知滿足條件,若所求的定點(diǎn)M存在,則一定是P點(diǎn).        6分
下面證明就是滿足條件的定點(diǎn).
設(shè)直線交橢圓于點(diǎn),.
由題意聯(lián)立方程       8分
由韋達(dá)定理得,             9分



            11分
,即在y軸正半軸上存在定點(diǎn)滿足條件.       12分
解法2:
設(shè)y軸上一點(diǎn),滿足, 即,        5分
設(shè)直線交橢圓于點(diǎn), .
由題意聯(lián)立方程       7分
由韋達(dá)定理得,             8分



           10分
整理得,
由對任意k都成立,得

解得                                   11分
所以存在點(diǎn)滿足.                12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓)過點(diǎn),且橢圓的離心率為.
(Ⅰ)求橢圓的方程;
(Ⅱ)若動點(diǎn)在直線上,過作直線交橢圓兩點(diǎn),且為線段中點(diǎn),再過作直線.證明:直線恒過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知點(diǎn),,動點(diǎn)滿足
(1)求動點(diǎn)的軌跡的方程;
(2)在直線上取一點(diǎn),過點(diǎn)作軌跡的兩條切線,切點(diǎn)分別為.問:是否存在點(diǎn),使得直線//?若存在,求出點(diǎn)的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

橢圓與雙曲線有公共的焦點(diǎn),過橢圓E的右頂點(diǎn)作任意直線l,設(shè)直線l交拋物線于M、N兩點(diǎn),且
(1)求橢圓E的方程;
(2)設(shè)P是橢圓E上第一象限內(nèi)的點(diǎn),點(diǎn)P關(guān)于原點(diǎn)O的對稱點(diǎn)為A、關(guān)于x軸的對稱點(diǎn)為Q,線段PQ與x軸相交于點(diǎn)C,點(diǎn)D為CQ的中點(diǎn),若直線AD與橢圓E的另一個交點(diǎn)為B,試判斷直線PA,PB是否相互垂直?并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,設(shè)F(-c,0)是橢圓的左焦點(diǎn),直線l:x=-與x軸交于P點(diǎn),MN為橢圓的長軸,已知|MN|=8,且|PM|=2|MF|。

(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)過點(diǎn)P的直線m與橢圓相交于不同的兩點(diǎn)A,B。
①證明:∠AFM=∠BFN;
②求△ABF面積的最大值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C的左、右焦點(diǎn)分別為,橢圓的離心率為,且橢圓經(jīng)過點(diǎn)
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)線段是橢圓過點(diǎn)的弦,且,求內(nèi)切圓面積最大時實(shí)數(shù)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓.

(1)橢圓的短軸端點(diǎn)分別為(如圖),直線分別與橢圓交于兩點(diǎn),其中點(diǎn)滿足,且.
①證明直線軸交點(diǎn)的位置與無關(guān);
②若∆面積是∆面積的5倍,求的值;
(2)若圓:.是過點(diǎn)的兩條互相垂直的直線,其中交圓兩點(diǎn),交橢圓于另一點(diǎn).求面積取最大值時直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知、分別是橢圓的左、右焦點(diǎn),右焦點(diǎn)到上頂點(diǎn)的距離為2,若.
(Ⅰ)求此橢圓的方程;
(Ⅱ)點(diǎn)是橢圓的右頂點(diǎn),直線與橢圓交于、兩點(diǎn)(在第一象限內(nèi)),又是此橢圓上兩點(diǎn),并且滿足,求證:向量共線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

已知,分別為雙曲線,的左、右焦點(diǎn),若在右支上存在點(diǎn),使得點(diǎn)到直線的距離為,則該雙曲線的離心率的取值范圍是(      )
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案