在如圖所示的正方體ABCD-A1B1C1D1中,E、F分別為棱AB與AA1的中點,則直線EF與平面ACC1A1成角的大小為
 
考點:直線與平面所成的角
專題:計算題,空間角
分析:如圖所示,連接BD,BD∩AC=O,連接A1O,A1B,證明∠BA1D為所求,即可得出結(jié)論.
解答: 解:如圖所示,連接BD,BD∩AC=O,連接A1O,A1B,則
∵E、F分別為棱AB與AA1的中點,
∴EF∥A1B,
∴直線A1B與平面ACC1A1成角等于直線EF與平面ACC1A1成角.
∵BD⊥平面ACC1A1,
∴∠BA1D為所求,
∵A1B=2BO,
∴∠BA1D=30°,
∴則直線EF與平面ACC1A1成角的大小為30°.
故答案為:30°.
點評:本題考查直線與平面所成的角,考查學(xué)生的計算能力,比較基礎(chǔ),
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,曲線C由半橢圓
y2
a2
+
x2
b2
=1(y≥0)與圓弧x2+(y-c)2=a2(y≤0)組成的,F(xiàn)(0,c)為半橢圓的一個焦點,A1、A2和B1、B2分別是曲線C與x軸、y軸交點,已知橢圓的離心率e=
1
2
,S △FA1B1=
3

(Ⅰ)求a,b,c的值;
(Ⅱ)過點F且不與x軸垂直的直線l交曲線C于P、Q兩點.
(i)求證:當(dāng)且僅當(dāng)P,Q均在半橢圓
y2
a2
+
x2
b2
=1(y≥0)上時,△B1PQ的周長L取最大,且最大值為8;
(ii)當(dāng)△B1PQ的周長L取最大時,求弦PQ長度的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為分流短途乘客,減緩軌道交通高峰壓力,上海地鐵實施新的計費標(biāo)準(zhǔn),新標(biāo)準(zhǔn)的分段計程制度如下:
0-6千米(含6千米) 6-16千米(含16千米) 16千米以上
3元 4元 每6千米遞增1元,但總票價不超過8元
(1)試作出票價y元關(guān)于路程x千米的函數(shù)圖象;
(2)某人買了5元的車票,他途經(jīng)路程不能超過多少千米?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知無窮數(shù)列{an}中,a1,a2,…,am是首項為2,公差為3的等差數(shù)列;am+1,am+2,…,a2m是首項為2,公比為2的等比數(shù)列(其中m≥3,m∈N*),并對任意的n∈N*,均有an+2m=an成立.
(1)當(dāng)m=14時,求a1000;
(2)若a52=128,試求m的值.
(3)求滿足條件an=128的所有n的值(用m表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

一個口袋中裝有兩個相同的紅球和一個白球,從中有放回地每次取出一個小球,數(shù)列{an}滿足:第n次摸到白球an=-1,第n次摸到紅球an=1,Sn=a1+a2+…+an(n∈N*),則事件“S8=2”的概率為
 
,事件“S2≠0,且S8=2”的概率為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

由正方體的八個頂點中的任意兩個所確定的所有直線中取出兩條,這兩條直線是異面直線的概率是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若a>2010,0<b<1,則logab+logba的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
6
+
y2
4
=1,直線l與橢圓相交于A,B兩點,且線段AB的中點為(1,1),則直線l的方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果直線2x-y-3=0和直線kx+2y-2=0垂直,那么k的值是
 

查看答案和解析>>

同步練習(xí)冊答案