設(shè)U=R全集,集合A={y|y=x2+1},B={x|x2-2x-3≥0},則A∩(∁UB)=( 。
A、{x|x≤-1}
B、{x|x≤1}
C、{x|-1<x≤1}
D、{x|1≤x<3}
考點(diǎn):交、并、補(bǔ)集的混合運(yùn)算
專題:集合
分析:分別化簡(jiǎn)集合A,B中的不等式的解集,確定出集合A,B,根據(jù)全集U=R,找出集合B的補(bǔ)集,然后找出集合B補(bǔ)集與集合A的公共部分,即可求出所求的集合.
解答: 解:集合A={y|=x2+1}={y|y≥1},
由集合B中的不等式x2-2x-3≥0,
分解因式得:(x-3)(x+1)≥0,
解得:x≥3或x≤-1,
∴B={x|x≥3或x≤-1},又全集U=R,
∴CUB={x|-1<x<3},又A={x|x≥1},
∴A∩CUB={x|1≤x<3}.
故選:D
點(diǎn)評(píng):此題考查了集合交、并、補(bǔ)集的混合運(yùn)算,是一道基本題型,求集合補(bǔ)集時(shí)注意全集的范圍.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若定義在R上的函數(shù)f(x)是奇函數(shù),f(x-2)是偶函數(shù),且當(dāng)0<x≤2時(shí),f(x)=
3x
,則方程f(x)=f(3)在區(qū)間(0,16)上的所有實(shí)數(shù)根之和是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

高三年級(jí)有3名男生和1名女生為了報(bào)某所大學(xué),事先進(jìn)行了多方詳細(xì)咨詢,并根據(jù)自己的高考成績(jī)情況,最終估計(jì)這3名男生報(bào)此所大學(xué)的概率都是
1
2
,這1名女生報(bào)此所大學(xué)的概率是
1
3
.且這4人報(bào)此所大學(xué)互不影響.
(Ⅰ)求上述4名學(xué)生中報(bào)這所大學(xué)的人數(shù)中男生和女生人數(shù)相等的概率;
(Ⅱ)在報(bào)考某所大學(xué)的上述4名學(xué)生中,記ξ為報(bào)這所大學(xué)的男生和女生人數(shù)的和,試求ξ的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=ax-
1
a
(a>0,a≠1)的圖象可能是( 。
A、
B、
C、
D、

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,四棱柱ABCD-A1B1C1D1的底面ABCD為菱形,O是底面ABCD的對(duì)角線的交點(diǎn),A1A=A1C,A1A⊥BC.
(1)證明:平面A1BC∥平面CD1B1;
(2)證明:A1O⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,AB是⊙O的直徑,點(diǎn)C,D是半圓弧AB上的兩個(gè)三等分點(diǎn),
AB
=
a
AC
=
b
,則
AD
=( 。
A、
1
2
a
+
b
B、
1
2
a
-
b
C、
a
+
1
2
b
D、
a
-
1
2
b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖所示的幾何體中,四邊形ABCD是菱形,ADMN是矩形,平面ADMN⊥平面ABCD,∠DAB=
π
3
,AD=2,AM=1,E是AB的中點(diǎn).
(Ⅰ)求證:DE⊥NC;
(Ⅱ)求三棱錐E-MDC的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式:
an+an+2
2
≤an+1成立,則稱數(shù)列{an}為向上凸數(shù)列(簡(jiǎn)稱上凸數(shù)列).現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
(1)數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
(2)對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中b=n2-6n+10.
則數(shù)列{an}中的第五項(xiàng)a5的取值范圍為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知雙曲線x2-
y2
2
=1的頂點(diǎn)、焦點(diǎn)分別為橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的焦點(diǎn)、頂點(diǎn).
(Ⅰ)求橢圓C的方程;
(Ⅱ)已知一直線l過橢圓C的右焦點(diǎn)F2,交橢圓于點(diǎn)A、B.當(dāng)直線l與兩坐標(biāo)軸都不垂直時(shí),在x軸上是否總存在一點(diǎn)P,使得直線PA、PB的傾斜角互為補(bǔ)角?若存在,求出P坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案