【題目】第一次大考后,某校對甲、乙兩個文科班的數(shù)學(xué)考試成績進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計成績后,得到如下列聯(lián)表,且已知在甲、乙兩個文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為

(I)請完成列聯(lián)表

優(yōu)秀

非優(yōu)秀

合計

甲班

10

乙班

30

合計

110

(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯誤的概率不超過0.01的前提下認(rèn)為成績與班級有關(guān)系?

參考公式和臨界值表

,其中

0.25

0.15

0.10

0.05

0.025

0.010

0.005

0.001

1.323

2.072

2.706

3.841

5.024

6.635

7.879

10.828

【答案】(1)見解析; (2)在犯錯誤的概率不超過0.01的前提下,認(rèn)為成績與班級有關(guān).

【解析】

(1)根據(jù)表格中數(shù)據(jù)可填寫列聯(lián)表;(2)由列聯(lián)表中數(shù)據(jù),利用公式計算觀測值對照臨界值可得出結(jié)論.

(I)根據(jù)題意,甲、乙兩個文科班第一次大考數(shù)學(xué)成績優(yōu)秀人數(shù)(人),

由此列聯(lián)表如下所示

優(yōu)秀

非優(yōu)秀

合計

甲班

10

50

60

乙班

20

30

50

合計

30

80

110

(Ⅱ)由列聯(lián)表的數(shù)據(jù),得到

因此,在犯錯誤的概率不超過0.01的前提下,認(rèn)為成績與班級有關(guān).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題14分)已知四棱錐P-ABCD,底面ABCD、邊長為的菱形,又,且PD=CD,點M、N分別是棱AD、PC的中點.

1)證明:DN//平面PMB;

2)證明:平面PMB平面PAD;

3)求點A到平面PMB的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在銳角△ABC中,內(nèi)角A、B、C的對邊分別是a、b、c,且2cos2+sin2A=1.
(Ⅰ)求A;
(Ⅱ)設(shè)a=2-2,△ABC的面積為2,求b+c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體ABCDPE的底面ABCD是平行四邊形,AD=AB=2,=0,PD⊥平面ABCD,EC∥PD,且PD=2EC=2.
(1)若棱AP的中點為H,證明:HE∥平面ABCD;
(2)求二面角A﹣PB﹣E的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若函數(shù)f(x)=ax2+bx-ln x的導(dǎo)函數(shù)的零點分別為1和2.

(I) 求a , b的值;

(Ⅱ)若當(dāng)時,恒成立, 求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐S﹣ABCD中,底面ABCD是矩形,SD=DC=2AD,側(cè)棱SD⊥底面ABCD,點E是SC的中點,點F在SB上,且EF⊥SB.
(1)求證:SA∥平面BDE;
(2)求證SB⊥平面DEF;

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=lnx,g(x)=ex , 其中e是白然對數(shù)的底數(shù),e=2.71828…
(I)若函數(shù)φ(x)=f(x)﹣求函數(shù)φ(x)的單調(diào)區(qū)間;
(Ⅱ)設(shè)直線l為函數(shù)f(x)的圖象上一點A(x0 , f(x0)處的切線,證明:在區(qū)間(1,+∞)上存在唯一的x0 , 使得直線l與曲線y=g(x)相切.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知AB是圓O的直徑,C、D是圓O上的兩個點,CE⊥AB于E,BD交AC于G,交CE于F,CF=FG.
(Ⅰ)求證:C是劣弧的中點;
(Ⅱ)求證:BF=FG.

查看答案和解析>>

同步練習(xí)冊答案