【題目】要得到函數(shù)y=sinx的圖象,只要將函數(shù)y=cos2x的圖象( )
A.向右平移個(gè)單位長(zhǎng)度,再將各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變
B.向左平移個(gè)單位長(zhǎng)度,再將各點(diǎn)的橫坐標(biāo)縮短為原來(lái)的倍,縱坐標(biāo)不變
C.向左平移個(gè)單位長(zhǎng)度,再將各點(diǎn)的橫坐標(biāo)伸長(zhǎng)為原來(lái)的4倍,縱坐標(biāo)不變
D.向右平移個(gè)單位長(zhǎng)度,再將各點(diǎn)的橫坐標(biāo)縮短到原來(lái)的 , 縱坐標(biāo)不變
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市市民用水?dāng)M實(shí)行階梯水價(jià),每人用水量不超過(guò)立方米的部分按元/立方米收費(fèi),超出立方米的部分按元/立方米收費(fèi),從該市隨機(jī)調(diào)查了位市民,獲得了他們某月的用水量數(shù)據(jù),整理得到如下頻率分布直方圖,并且前四組頻數(shù)成等差數(shù)列,
(Ⅰ)求的值及居民用水量介于的頻數(shù);
(Ⅱ)根據(jù)此次調(diào)查,為使以上居民月用水價(jià)格為元/立方米,應(yīng)定為多少立方米?(精確到小數(shù)點(diǎn)后位)
(Ⅲ)若將頻率視為概率,現(xiàn)從該市隨機(jī)調(diào)查名居民的用水量,將月用水量不超過(guò)立方米的人數(shù)記為,求其分布列及其均值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)F1(﹣c,0),F(xiàn)2(c,0)分別是橢圓C: (a>b>0)的左右焦點(diǎn),經(jīng)過(guò)F1做x軸的垂線交橢圓C的上半部分于點(diǎn)P,過(guò)點(diǎn)F2作直線PF2垂線交直線 于點(diǎn)Q.
(Ⅰ)如果點(diǎn)Q的坐標(biāo)是(4,4),求此時(shí)橢圓C的方程;
(Ⅱ)證明:直線PQ與橢圓C只有一個(gè)交點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】關(guān)于x的不等式ax2+bx+2>0的解集為{x|-1<x<2},則關(guān)于x的不等式bx2-ax-2>0的解集為( )
A. {x|-2<x<1} B. {x|x>1或x<-2}
C. {x|x>2或x<-1} D. {x|x<-1或x>1}
【答案】B
【解析】
利用不等式的解集與方程根的關(guān)系,求出a,b的值,即可求得不等式bx2﹣ax﹣2>0的解集.
∵關(guān)于x的不等式ax2+bx+2>0的解集為(﹣1,2),
∴﹣1,2是ax2+bx+2=0(a<0)的兩根
∴
∴a=﹣1,b=1
∴不等式bx2﹣ax﹣2>0為x2+x﹣2>0,
∴x<﹣2或x>1
故選:B.
【點(diǎn)睛】
(1)二次函數(shù)圖象與x軸交點(diǎn)的橫坐標(biāo)、二次不等式解集的端點(diǎn)值、一元二次方程的解是同一個(gè)量的不同表現(xiàn)形式。
(2)二次函數(shù)、二次方程與二次不等式統(tǒng)稱“三個(gè)二次”,它們常結(jié)合在一起,而二次函數(shù)又是“三個(gè)二次”的核心,通過(guò)二次函數(shù)的圖象貫穿為一體.有關(guān)二次函數(shù)的問(wèn)題,利用數(shù)形結(jié)合的方法求解,密切聯(lián)系圖象是探求解題思路的有效方法.
【題型】單選題
【結(jié)束】
6
【題目】已知a,b,c分別是△ABC的內(nèi)角A,B,C的對(duì)邊,若△ABC的周長(zhǎng)為2(+1),且sin B+sin C=sin A,則a= ( )
A. B. 2 C. 4 D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知等差數(shù)列{an}的前n項(xiàng)和為Sn,S4=40,Sn=210,Sn-4=130,則n=( )
A.12 B.14 C.16 D.18
【答案】B
【解析】Sn-Sn-4=an+an-1+an-2+an-3=80,S4=a1+a2+a3+a4=40,所以4(a1+an)=120,a1+an=30,由Sn==210,得n=14.
【題型】單選題
【結(jié)束】
9
【題目】等比數(shù)列{an}是遞減數(shù)列,前n項(xiàng)的積為Tn,若T13=4T9,則a8a15=( )
A. 2 B. ±2 C. 4 D. ±4
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知定義域?yàn)镽的偶函數(shù)f(x)滿足對(duì)任意的x∈R,有f(x+2)=f(x)﹣f(1),且當(dāng)x∈[2,3]時(shí),f(x)=﹣(x﹣2)2+1.若函數(shù)y=f(x)﹣a(x﹣)在(0,+∞)上恰有三個(gè)零點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.( , 3)
B.( , )
C.(3,12)
D.( , 12)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】第一次大考后,某校對(duì)甲、乙兩個(gè)文科班的數(shù)學(xué)考試成績(jī)進(jìn)行分析,規(guī)定:大于或等于120分為優(yōu)秀,120分以下為非優(yōu)秀,統(tǒng)計(jì)成績(jī)后,得到如下列聯(lián)表,且已知在甲、乙兩個(gè)文科班全部110人中隨機(jī)抽取1人為優(yōu)秀的概率為.
(I)請(qǐng)完成列聯(lián)表
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
甲班 | 10 | ||
乙班 | 30 | ||
合計(jì) | 110 |
(Ⅱ)根據(jù)列聯(lián)表的數(shù)據(jù)能否在犯錯(cuò)誤的概率不超過(guò)0.01的前提下認(rèn)為成績(jī)與班級(jí)有關(guān)系?
參考公式和臨界值表
,其中.
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知空間三點(diǎn)A(0,2,3),B(-2,1,6),C(1,-1,5).
(1)若,且a分別與,垂直,求向量a的坐標(biāo);
(2)若∥,且,求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿分14分)已知過(guò)原點(diǎn)的動(dòng)直線與圓 相交于不同的兩點(diǎn),.
(1)求圓的圓心坐標(biāo);
(2)求線段的中點(diǎn)的軌跡的方程;
(3)是否存在實(shí)數(shù),使得直線 與曲線只有一個(gè)交點(diǎn)?若存在,求出的取值范圍;若不存在,說(shuō)明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com